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Kinetic Theory of Area-Preserving Maps. Application
to the Standard Map in the Diffusive Regime
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The evolution of the distribution function of a dynamical system governed by a
general two-dimensional area-preserving iterative map is studied by the methods
of nonequilibrium statistical mechanics. A closed, non-Markovian master equa-
tion determines the angle-averaged distribution function (the ``density profile'').
The complementary, angle-dependent part (``the fluctuations'') is expressed as a
non-Markovian functional of the density profile. Whenever there exist two widely
separated intrinsic time scales, the master equation can be markovianized, yield-
ing an asymptotic kinetic equation. The general theory is applied to the standard
map in the diffusive regime, i.e., for large stochasticity parameter and large scale
length. The non-Markovian master equation can be written and solved analyti-
cally in this approximation. The two characteristic time scales are exhibited.
This permits the thorough study of the evolution of the density profile, its
tendency toward the Markovian approximation, and eventually toward a dif-
fusive Gaussian packet. The evolution of the fluctuations is also described in
detail. The various relaxation processes are governed asymptotically by a single
diffusion coefficient, which is calculated analytically. This model appears as a
testing bench for the study of kinetic equations. The various previous approaches
to this problem are reviewed and critically discussed.

KEY WORDS: Iterative maps; standard map; nonequilibrium statistical
mechanics; kinetic equations; non-Markovian effects; non-Gaussian effects;
diffusive regime; diffusion coefficient.

1. INTRODUCTION

Iterative maps have been extensively used for the study of evolution
problems, possibly as a substitute of differential equations. They lead to a
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much simpler formalism, which is particularly useful in numerical cal-
culations. They may either be derived from differential equations by the
Poincare� section or stroboscopic section techniques, or else they may be
constructed a priori. Of particular importance for the modelling of classical
mechanical systems are Hamiltonian (or area-preserving) maps. They
preserve the main mathematical structure of continuous-time dynamics. In
particular, the values of the dynamical variables at time {+1 are related to
those at time { by a canonical transformation. We limit ourselves in the
present work to two-dimensional area-preserving maps, depending on a
single, non-negative parameter K, the stochasticity parameter. We assume
that one of the variables is an angle denoted, for convenience, by 2?%;
the other co-ordinate (analogous to an action variable) is denoted by x.
A general map of this type is defined by the following recurrence relations:

x{+1=x{+5(x{ , %{ ; K ), %{+1=%{+3(x{ , %{ ; K ) (1)

Here { is the discrete time, taking integer values 0, 1, 2, ...; x{ , %{ are,
respectively, the values of the variables x, % at time {. 5 and 3 are con-
tinuous functions of their three variables x, %, K. They are periodic in %,
with period 1; this variable may thus be restricted to the range (0�1).
These functions satisfy some constraints ensuring the Hamiltonian character
of the map; we do not write down here these constraints.(1)

In the first part of this paper we consider properties of maps of the
general form (1). These properties will be illustrated for the specific case of
the well-known Chirikov�Taylor standard map(2�4) (we only quote here a
few among the numerous works devoted to this subject). It is, indeed, one
of the simplest two-dimensional Hamiltonian maps of the class (1), many
properties of which can be derived analytically:

x{+1 =x{&
K
2?

sin 2?%{
(2)

%{+1=%{+x{+1 , (mod 1)

Iterative (in particular, Hamiltonian) maps prove to be useful tools for
the study of transport processes. In order to treat such problems one
adopts a statistical description (see, e.g., refs. 5 or 6, Chap. 15). The con-
sideration of individual trajectories defined by Eqs. (2) is then replaced by
the study of a statistical ensemble defined by a distribution function
F(x, %; {) in the phase space spanned by the variables x and %: this is a
1-periodic function of % and is defined only for integer values of {. [The
distribution function also depends on the parameter K; for brevity, this
dependence will most often not be written down explicitly.] The relation
between the individual orbits point of view described by Eqs. (1) or (2) and
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the statistical point of view is analogous to the relation between trajectories
defined in continuous time by Hamilton's equations of motion and the
description in terms of a distribution function obeying the Liouville equation.

Of special physical interest for transport theory is the angle-averaged
distribution function, called the density profile n(x; {):

n(x; {)=|
1

0
d% F(x, %; {) (3)

It has been known for a long time(2�4, 7�14) that in the limit of large K,
the evolution described by the standard map has a diffusive character. This
statement has to be made more precise, because it may address various
aspects of the evolution. In most previous works the purpose was to show
(analytically or numerically) that the second moment (mean square dis-
placement) of the density profile grows asymptotically linearly in time, and
to calculate the corresponding diffusion coefficient. These works will be
reviewed and discussed in Section 11. A complete proof of the existence of
a diffusive regime involves the study of the complete density profile. It
should show that the density profile, starting from an arbitrary initial state
and evolving by the standard map dynamics, tends asymptotically toward
a Gaussian packet, which is the solution of a diffusion equation. This is the
goal of our present study.

In ``classical'' statistical mechanics such a study involves the solution
of a Master equation, i.e., a closed equation for a reduced distribution func-
tion. A corresponding equation for systems described by discrete-time
iterative maps was obtained in a recent paper by Bandtlow and Coveney.(15)

They derived an exact closed equation for the density profile, analogous
to the Master equation obtained by Prigogine and Re� sibois(16) and by
Zwanzig(17) in continuous-time statistical mechanics. The most important
characteristic of both equations is their non-Markovian nature: the evolu-
tion of the system at time { is determined not only by its instantaneous
state, but rather by its past history. It is well known in continuous-time
kinetic theory that, whenever there exist two characteristic time scales that
are widely separated (e.g., the duration of a collision, and the inverse colli-
sion frequency in a gas) the Master equation reduces, for times much
longer than the short time scale, to a Markovian kinetic equation.

The Bandtlow�Coveney equation is quite general; it appears that the
standard map provides us with an ideal testing bench for studying its
properties. It is interesting to investigate whether there exist here also two
such characteristic time scales, and under which conditions a markovianization
is justified. This will be one of the objects of the present work.
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In order to obtain a complete description of the system, an equation
for the complementary, angle-dependent part of the distribution function is
also needed. More precisely, the distribution function is decomposed as
follows:

F(x, %; {)=n(x; {)+G(x, %; {) (4)

where the function G has vanishing angle-average:

|
1

0
d% G(x, %; {)=0 (5)

In continuous-time statistical mechanics the role of G is played by the
correlations. The formalism of non-equilibrium statistical mechanics results
in a complete description of the correlations.(18) Here too, the basic equa-
tion for G is non-Markovian. But under the same conditions as described
above, a Markovian regime is reached asymptotically, in which the correla-
tions at time { become functionals of the average distribution function at
the same time. In the present work this formalism will be extended to dis-
crete-time dynamical systems.

The paper is organized as follows. After a brief review of continuous-
time statistical mechanics (Section 2), the formalism is extended to discrete-
time systems in Section 3, following and completing the work of ref. 15.
The Master equation for the density profile and the equation for the fluc-
tuations are established for a general 2-dimensional area-preserving map.
These equations are applied specifically to the standard map for arbitrary
values of the stochasticity parameter in Section 4. They take a simpler,
analytically tractable form in the ``diffusive regime'', as shown in Sections 5
and 6. The non-Markovian Master equation is solved for the density
profile and its relation to the Markovian approximation is studied in Sec-
tion 7. Even the Markovian solution remains non-Gaussian for a long time
before reaching the truly diffusive Gaussian form (Section 8). The role of
the initial fluctuations in the evolution of the density profile is studied in
Section 9. Finally Section 10 is devoted to the evolution of the fluctuations.
Section 11 contains a review and a critical discussion of previous works,
ending with the conclusions (Section 12).

2. REVIEW OF CONTINUOUS-TIME NON-EQUILIBRIUM
STATISTICAL MECHANICS

We consider a classical dynamical system of N particles, inscribed in
a phase space whose coordinates are the positions qj and the momenta pj
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of the particles, and characterized by a Hamiltonian H(X). We introduce
here the abbreviation X=(q1 , p1 ,..., qN , pN). The state of the system is
described statistically by a distribution function F(X; t), obeying the
Liouville equation:

�
�t

F(X; t)=LF(X; t) (6)

where the Liouvillian operator is the Poisson bracket with the Hamiltonian:
LF=[H, F ]. The solution of the initial-value problem of this equation
can be written formally in terms of a propagator:

F(X; t)=G(t) F(X; 0)#exp(Lt) F(X; 0) (7)

We now consider a decomposition of the distribution function into
two mutually exclusive parts, called the vacuum and the correlations. The
explicit representation of this decomposition is not important here. Various
definitions can be adopted: one of them is based on a Fourier decomposi-
tion(19, 20); alternatively, a representation in terms of reduced distribution
functions is closer to the physical concept of correlations.(6, 18) The mutual
exclusion of the two components allows us to introduce two projection
operators V and C, with the following properties: V+C=I, V 2=V,
C2=C, VC=CV=0. The decomposition of the distribution function is
then written as:

F(X; t)=VF(X; t)+CF(X; t) (8)

Some straightforward calculations which we do not reproduce here,
because they are very similar to those described in the next section (see
ref. 20, Section 16.3) lead, without any approximation, to the following
conclusion. The vacuum component of the distribution function, VF(t), is
shown to obey the following equation (omitting to write the variable X):

�
�t

VF(t)=CLV(t)+|
t

0
ds VE(s) VF(t&s)+VD(t) CF(0) (9)

where E(t), D(t) are operators defined in terms of the Liouvillian and
called, respectively, the irreducible evolution operator and the destruction
operator (again, we need not specify their form here). This is the well-
known Master Equation due to Prigogine and Re� sibois. (16, 17) It is a closed
equation for the vacuum component of the distribution function. Its main
characteristics are the following:
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v It is a non-Markovian Equation: through the convolution appearing
in the second term of the right hand side, the rate of change of the unknown
function at time t is related to the whole past history, back to t=0.

v The third term in the right hand side is related to the initial value
of the complementary part CF(0): this appears as a source term in the
Master equation.

v The first term in the equation is a Markovian contribution deter-
mined by the action of the diagonal vacuum part of the Liouvillian
operator; for a gas of interacting particles this term corresponds to the
mean field, or Vlasov operator.

The first two features are not compatible, at first sight, with the known
macroscopic laws of continuum mechanics. One of the important purposes
of non-equilibrium statistical mechanics has been to understand how this
compatibility can be restored. Whenever some conditions are satisfied, it
appears that an asymptotic regime sets in, in which the evolution is
described by simpler laws. This occurs, in particular, whenever there exist
two widely separated intrinsic time scales in the system. In a dilute gas, for
instance, these are the duration of a collision and the much longer mean
free time between collisions. The first one is related to the rate of change
of the operators VE(t) V, VD(t) C: it is a measure of the effective range
of the memory. The second one characterizes the rate of change of the
distribution function VF(t): it describes the rate of relaxation towards
the final (equilibrium) state. Given that the distribution function varies
very slowly on the short time scale, the following asymptotic limit, called
Markovianization can be performed on the Master equation:

v The destruction term, which tends to zero for times longer than the
short time scale, is neglected;

v In the second term the retardation of the distribution function is
neglected: VF(t&s) � VF(t), and the integration is extended to infinity
(because the integrand is cut off by VE(s) V ).

We are then left with the following Markovian equation, called the
Kinetic Equation:

�
�t

VF(t)=VLV(t)+VEVF(t) (10)

with the following time-independent ``collision operator'':

VEV=|
�

0
ds VE(s) V (11)
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For a dilute gas, Eq. (10) is the well-known Boltzmann kinetic equa-
tion. In order to complete the picture, the correlation part CF(t) is treated
in a similar way (see Section 3); as a result, the following equation is
obtained:

CF(t)=|
t

0
ds CC(s) VF(t&s)+CP(t) CF(0) (12)

where CC(t) V, CP(t) C are called, respectively, creation fragment and
propagation fragment. This equation shows that the correlation component
of the distribution function is a functional of the vacuum. The relation is,
however, also ``non-Markovian'' in the sense that the correlation at time t
is determined by the whole past history of the vacuum part. It also contains
a contribution of the initial correlation, propagated by the last term in the
right hand side.

Whenever the two time scales defined above are widely separated, this
exact relation can also be Markovianized:

CF(t)=CCVF(t) (13)

with:

CCV=|
�

0
ds CC(s) V (14)

The validation of the assumptions leading from the exact Master equa-
tions (9) and (12) to the asymptotic kinetic equations (10) and (13) is not
always an easy matter for realistic systems. It is therefore interesting to
note that for some simple model systems, such as the standard map, this
passage can be studied in considerable detail, at least in a certain limit.
This will be shown in the forthcoming sections. Before doing that, the for-
malism of non-equilibrium statistical mechanics has to be adapted to the
dynamical systems described in discrete time by an area-preserving map.

3. DISCRETE-TIME NONEQUILIBRIUM STATISTICAL
MECHANICS

We consider a dynamical system whose evolution is defined by an
area-preserving map of the form (1); its statistical state is determined by a
distribution function F(x, %; {) defined in Section 1. The evolution of this
function can no longer be determined by a differential equation, such as the
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Liouville equation (6), because the time derivative has no meaning in
discrete time. A relation like (7) remains, however, relevant. One therefore
associates with the map (1) the Perron�Frobenius operator, U, defined by
the following recurrence relation:

F(x, %; {+1)=UF(x, %; {) (15)

Alternatively, one may introduce the propagator, which relates the
instantaneous distribution function to its initial value:

F(x, %; {)=U{F(x, %; 0) (16)

In continuous-time dynamics the Perron�Frobenius operator U corre-
sponds to exp(L), and the propagator U{ corresponds to the propagator
exp(L{) defined in Eq. (7). (Here and below, roman letters t, s,... denote
real, continuous time variables, whereas greek letters {, _,... denote discrete
time variables, taking only integer values.) The properties of the Perron�
Frobenius operator have been described in many places.(5, 6, 21, 22)

The Fourier transform of the distribution function with respect to
both phase space variables, fM(q; {), will be extensively used below:

F(x, %; {)= :
�

M=&�
|

�

&�
dq e2?i(qx+M%) fM(q; {) (17)

The statistical state of the system is thus completely specified by the
set of all Fourier components. The latter ``distribution vector'' will be
represented by the single symbol f ({), denoting the set of functions
[ fM(q, {), M=0, \1, \2,...]. From here on, the following convention will
be used. We denote by a capital letter: M, N,... an arbitrary integer,
positive, negative, or zero; we denote by a lower-case letter: m, n,... an
arbitrary non-zero integer.

As explained in Section 1, we are interested in deriving an equation of
evolution for the angle-averaged distribution function, or density profile
n(x; {) [Eq. (3)] or, equivalently, for its Fourier transform, which is simply
the M=0 Fourier component of the distribution function; it will be
denoted by the notation .(q; {):

n(x; {)=|
�

&�
dq e2?iqx.(q; {)

(18)

.(q; {)=f0(q; {)
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The following important properties are immediately derived from the
definition (17). The normalization of the distribution function F(x, %; {) is
expressed as follows in the Fourier representation:

|
�

&�
dx |

1

0
d% F(x, %; {)=.(0, {)=1 (19)

The moments of the density profile n(x; {) are simply expressed in
terms of the derivatives of its Fourier transform:

(x p({))=
1

(2?i) p

� p.(q; {)
�q p }q=0

(20)

The (Fourier) density profile can also be obtained by acting on the full
distribution function with a projection operator P whose effect is the
average over the angle % [or the extraction of the M=0 component of the
Fourier series (17)]:

Pf ({)= f0(q; {)#.(q; {) (21)

(In forthcoming equations, the arguments q, x, % of the distribution functions
will not be written down explicitly whenever they are clearly understood.)
Obviously, P2=P. Let Q be the complement of the projector P, thus:
P+Q=I, (where I is the identity operator), and PQ=QP=0. The
operators P and Q thus form a pair of projectors, analogous to the
operators V and C of Section 2. By the action of these projectors, one
produces a decomposition of the distribution function analogous to
Eq. (8):

f ({)=Pf ({)+Q f ({) (22)

The fluctuation part Q f ({) comprises the set of all Fourier components
with m{0; in order to stress this constraint, we choose a different notation
for the Fourier components with m{0:

gm(q; {)#fm(q; {), m{0
(23)

g0(q; {)=0

Thus, Q f ({), also denoted by the simpler notation g({), represents the
following set of functions:

Q f ({)#g({)=[gm(q; {); m=\1, \2] (24)

1177Kinetic Theory of Area-Preserving Maps



We now wish to derive a closed equation of evolution for the density
profile, and a separate equation for the set of fluctuations. Although many
of these calculations can be found in refs. 6, 14, 15, 21, we briefly sketch
them here for the reader's convenience. Bandtlow and Coveney(15) start
from the trivial identity expressing the group property of the Perron�
Frobenius operator:

U{+1=UU{ (25)

which is projected on the P and Q subspaces, and rewritten in the form:

PU{+1=PUPU{+PUQU{

(26)
QU{+1=QUPU{+QUQU{

We now perform a so-called Z-transformation, (15) which plays the
same role for discrete-time systems as the Laplace transformation in con-
tinuous time. This is simply a Laurent series with non-positive exponents.
The Z-transform of an arbitrary function (or operator) T({) is defined as:

Z[T({)]#T� (z)= :
�

{=0

T({) z&{ (27)

where z is a complex variable. In particular, when T({)=T{, the
geometrical series is summed in the form:

Z(T{)=
z

z&T
(28)

We now note the following important properties of the Z-transform,
which are easily proved. The inverse Z-transformation is:

Z&1[T� (z)]#T({)=
1

2?i �
C

dz z&{&1T� (z) (29)

where C is a closed contour surrounding all singularities of T� (z).2 The
following relation is called the shifting theorem:

Z(T({+_))=z_ _T� (z)& :
_&1

{=0

T({) z&{& (30)
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We finally note the convolution theorem in discrete time:

Z { :
{

_=0

S(_) T({&_)==S� (z) T� (z) (31)

We now return to Eq. (26) both sides of which are multiplied by z&{

and summed over { from 0 to �. In the left hand side we make use of the
shifting theorem (30) and obtain two relations for the Z-transformed
propagator:

z[PU� (z)&PU0]=PUPU� (z)+PUQU� (z)
(32)

z[QU� (z)&QU0]=QUPU� (z)+QUQU� (z)

The second equation is solved for QU� (z), and the result is substituted into
the first one, with the result:

z[PU� (z)&P]=\PUP+PUQ
1

z&QUQ
QUP+ PU� (z)+PUQ

z
z&QUQ

Q

(33)

We now return to the {-representation. The inverse Z-transforms of
the last two terms of Eq. (33) are obtained by expanding the operator
[z&QUQ]&1 in powers of QUQ and using Eq. (29). The following
operators are now defined:

Propagation fragment:

QP({) Q=(QUQ){&1, {�1 (34)

Diagonal fragment:

PE({) P=PUQP({) QUP, {�1 (35)

Creation fragment:

QC({) P=QP({) QUP, {�1 (36)

Destruction fragment:

PD({) Q=PUQP({) Q, {�1 (37)

These equations are completed with the following additional ones:

QP(0) Q=PE(0) P=QC(0) P=PD(0) Q=0 (38)
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Note also the simple relation:

QP(1) Q=Q (39)

A short calculation, using the shifting theorem (30) and the convolu-
tion theorem (31), transforms Eq. (33) into:

PU{+1=PUPU{+ :
{

_=1

PE(_) PU{&_+PD({+1) Q (40)

Multiplying this equation to the right by the initial distribution func-
tion f (0) and using the (Fourier-transformed) Eq. (16), we find:

Pf ({+1)=PUPf ({)+ :
{

_=1

PE(_) Pf ({&_)+PD({+1) Q f (0) (41)

This is the discrete-time Master equation, first derived by Bandtlow
and Coveney:(15) it is precisely analogous to the continuous-time Master
equation (9). It is a closed equation for the density profile Pf ({)#.({); its
non-Markovian character is again manifest in the convolution of the
second term. It also contains a source term (destruction term) involving the
initial fluctuations Q f (0)#g(0).

In order to complete the picture, we derive an equation for the fluctua-
tion component of the distribution function (not considered in ref. 15).
Solving the second equation (32) we find:

QU� (z)=Q
1

z&QUQ
QUPU� (z)+zQ

1
z&QUQ

Q

Right-multiplication of both sides by the initial distribution function
f (0) and inverse Z-transformation yields:

Q f ({)= :
{

_=0

QC(_) Pf ({&_)+QP({+1) Q f (0), {�1 (42)

Unlike Eq. (41), Eq. (42) is an explicit relation determining the fluc-
tuation at time { once the density profile Pf ({) is known at all previous
times from the solution of the Master equation. In other words, the fluctua-
tion is a ``non-Markovian'' functional of the density profile. The structure of
this equation is exactly analogous to Eq. (12) in continuous time.

Having completed the derivation of these evolution equations by the
method of projections, we simplify the notations, by omitting the writing
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of the projection operators and using the notations of Eqs. (18) and (24);
we also group together the first two terms in the right hand side of Eq. (41)
into the memory kernel �({). Thus:

Pf ({) � .({), Q f ({) � g({)

QP({) Q � P({), QC({) P � C({), PD({) Q � D({) (43)

PUP${, 0+PE({) P � �({)

Equations (41) and (42) are then rewritten in the more compact form:

.({+1)= :
{

_=0

�(_) .({&_)+D({+1) g(0) (44)

g({)= :
{

_=0

C(_) .({&_)+P({+1) g(0) (45)

Let us recall that Eq. (45) is actually an abbreviation for a set of
individual equations for the Fourier components gm(q; {), m=\1, \2,...
Eq. (39) ensures that for {=0 Eq. (45) reduces to the identity g(0)= g(0).

As can be seen from the derivation, no approximation has been made:
Eqs. (44) and (45) are exact equations.3 Let us now assume that there exist
two widely separated time scales. The short memory time {M characterizes
the decay of the four operators defined in Eqs. (34)�(37)

�({)rD({)rC({)rP({)r0, {>{M (46)

The long relaxation time {R measures the rate of change of the density
profile; it will be precisely defined in Section 7. In this case we may perform
an asymptotic markovianization, just as in Section 2. The last term in
Eqs. (44) and (45) is neglected, the retardation is neglected in .({&_), and
the upper limit in the summations over _ is extended to infinity. The
resulting equations are:

.({+1)=9.({), {>>{M (47)

g({)=C.({), {>>{M (48)
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The time-independent operators appearing in these Markovian kinetic
equations are:

9= :
�

_=0

�(_) (49)

C= :
�

_=0

C(_) (50)

It is worth stressing the formal analogy between the initial Perron�
Frobenius equation (15) and the Markovian kinetic equation (47): in both
cases the unknown function at time {+1 is expressed by the action of a
time-independent operator on its value at time {. The essential difference
between the two equations is that the former involves the complete dis-
tribution function (i.e., the infinite set of its Fourier components), whereas
the latter involves solely the m=0 component, i.e., the density profile. All
the other Fourier components (i.e., the fluctuations) are determined by the
density profile through the explicit relation (48). Here resides the essential
reduction of the description achieved by the asymptotic kinetic regime,
whenever it is valid.(18)

The exact non-Markovian Master equations (44) and (45), and their
asymptotic Markovian approximations (47) and (48) constitute the basis
of the kinetic theory of area-preserving maps. They will now be applied to
the case of the standard map.

4. KINETIC EQUATIONS FOR THE STANDARD MAP

The advantage of the standard map lies in the fact that it is, on one
hand a useful model for many real physical problems, and on the other
hand it is sufficiently simple for performing many calculations explicitly. In
particular, the Perron�Frobenius operator, which requires the inversion of the
map (2), can be written explicitly as follows in the (x, %) representation:(6, 14)

U=exp \&x
�

�%+ exp \ K
2?

sin 2?%
�

�x+ (51)

The Perron�Frobenius operator clearly depends on the stochasticity
parameter K; for brevity, this dependence is not written down explicitly in
the present section. The result of its action on the distribution function is:

F[x, %; {+1]=UF[x, %; {]

=F _x+
K
2?

sin 2?(%&x), %&x; {& (52)
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We now go over to the Fourier representation defined by Eq. (17).
The action of the Perron�Frobenius operator is then written as follows:

fM(q; {+1)= :
�

M$=&�
|

�

&�
dq$(q, M | U |q$, M$) fM$(q$; {) (53)

The matrix element of the Perron�Frobenius operator is defined as usual
(e.g., in quantum mechanics):

(q, M | U |q$, M$) =|
�

&�
dx |

1

0
d% exp[&2?i(qx+M%)]

_exp {2?i _q$x+q$
K
2?

sin 2?(%&x)+M$(%&x)&=
=:

N
|

�

&�
dx |

1

0
d% exp[2?i(&q+q$&N&M$) x]

_exp[2?i(&M+M$+N ) %] JN(q$K ) (54)

The well-known identity for the Bessel function of order N, JN(z) has
been used:

exp(iz sin ,)= :
�

N=&�

eiN,JN(z) (55)

The integrations in Eq. (54) are now easily done, with the result:

(q, M | U |q$, M$) =$(q$&q&M ) JM&M$(q$K ) (56)

The basic operators entering the Master equations are easily obtained
in the Fourier representation. The calculation is sketched in Appendix A.
They are most compactly expressed in terms of the following operator:

W� M0 , Mf
(q | q$; {)=:

m1

} } } :
m{

$ \q$&q&M0& :
{

j=1

mj+
_JM0&m1

[(q+M0) K ] Jm1&m2
[(q+M0+m1) K ]

_Jm2&m3
[(q+M0+m1+m2) K ] } } } Jm{&Mf

(q$K ), {�1

(57)

According to our convention, in all sums over (lower case) m j the value 0
is excluded. We use the convention of writing a hat over the symbols
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denoting ``double matrix elements'', i.e., objects depending both on a couple
of integers (M0 , Mf ) and on a couple of (continuous) wave vectors (q, q$).

The Master equation for the density profile (44) is now written as
follows:

.(q; {+1)= :
{

_=0
| dq$ �� (q | q$; _) .(q$; {&_)

+:
m$

| dq$ D� m$(q | q$; {+1) gm$(q$; 0) (58)

The memory kernel is obtained as:

�� (q | q$; 0)=$(q$&q) J0(qK )
(59)

�� (q | q$; _)=W� 0, 0(q | q$; _), _�1

The destruction operator is:

D� m$(q | q$; 1)=$(q$&q) J&m$(qK )
(60)

D� m$(q | q$; {+1)=W� 0, m$(q | q$; {), {�1

We now consider the equation for the fluctuations, (45), which is
written as:

gm(q; {)= :
{

_=0
| dq$ C� m(q | q$; _) .(q$; {&_)

+:
m$

| dq$ P� m, m$(q | q$; {+1) gm$(q$; 0) (61)

The creation operator is:

C� m(q | q$; 0)=0

C� m(q | q$; 1)=$(q$&q&m) Jm[(q+m) K ] (62)

C� m(q | q$; _)=W� m, 0(q | q$; _&1), _�2

The propagation operator is:

P� m, m$(q | q$; 1)=$(q$&q) $m, m$

P� m, m$(q | q$; 2)=$(q$&q&m) Jm&m$[(q+m) K ] (63)

P� m, m$(q | q$; {+1)=W� m, m$(q | q$; {&1), {�2

1184 Balescu



We stress the fact that the equations of evolution (58)�(63) are exact
equations for the standard map: no approximation whatever was done in
their derivation. We summarize again here their structure.

The basic equation is the Master equation (58), a closed equation for
the density profile. It is a non-Markovian equation in discrete time, as the
unknown function is involved in a convolution in {; it is, moreover an
integral equation with respect to the wave-vector q. Finally, we note the
presence of the destruction fragment which is, mathematically, a source
term, involving the initial value of the correlations. These features make the
equation rather complicated. Let us add the fact that the operator W�
defined in Eq. (57) involves multiple series in m, and we shall be convinced
that there is no hope for an exact solution of these equations. It would,
indeed, have been surprising if there existed a simple general solution of the
Master equation, given the known complexity of the standard map orbits
for K>1.

Equation (61) for the fluctuations looks very similar to the master
equation (58). There is, however, a very important difference: the former is
not an equation at all. It rather expresses explicitly the unknown function
gm(q; {) in terms of the density profile and of the initial fluctuations. If a
solution of the master equation has been obtained in the first step, the fluc-
tuations are obtained from eq. (61) by a mere quadrature and a summation
over the past values of the density profile, together with a contribution of
the initial fluctuations.

5. THE DIFFUSIVE REGIME

In order to obtain specific results, it is necessary to look for special
regimes, i.e., ranges of parameters and of variables, for which the general
equations become simpler. It has been known since many years(2�4, 7�13)

that in the limit of large stochasticity parameter K the dynamics of the
standard map tends toward a diffusive dynamics, characterized by a diffusion
coefficient D(K ). It has later been shown by Hasegawa and Saphir(6, 14)

that the condition of large K must be coupled to a condition of small wave
vector q, i.e., of large spatial scales, in order to reach a truly diffusive
regime. More precisely, they defined the following range for the diffusive
regime:

- K >>1, qK<<1 (64)

The second condition is, however, not expressed in a satisfactory way,
as it involves a variable (q) rather than an external parameter. The more
precise formulation must be done as follows. We assume that both the

1185Kinetic Theory of Area-Preserving Maps



density profile and the fluctuations are initially sharply peaked around
q=0, with a width much smaller than K&1. The conditions (64) will thus
be replaced by the following (somewhat more stringent) ones:4

- K >>1

.(q, K; 0) r 0, |q|-K&1 (65)

gm(q, K; 0) r 0, |q|-K&1, \m

In order for the forthcoming approximations to hold, it must be
checked a posteriori that the standard map dynamics ensures the validity of
these relations at all positive times:

.(q, K; {)r0, |q|-K&1, {>0
(66)

gm(q, K; {)r0, |q|-K&1, \m, {>0

A direct consequence of the sharp peaking of the distribution functions
is the following:

.[q+n, K; {]r0, |q|<<1, |n|=\1, \2,...
(67)

gm[q+n, K; {]r0, |q|<<1, |n|=\1, \2,..., \m

We now return to Eqs. (58) and (61): in both of these the value of
a distribution function for wave vector q is related in the right hand side
to a distribution function at a different value q$. As appears from the
definition (57), the latter differs from the former by a certain integer:
M0+�{

j=1 mj . It then follows from Eq. (67) that the corresponding con-
tributions are negligibly small, except when this integer is zero. Hence, in
the diffusive regime we only have to retain terms in the summations where
this condition is satisfied. This then implies that the $-function in (57)
reduces to $(q$&q), i.e., all the matrix operators reduce to their diagonal
matrix elements (in q), and the integrations over q$ in Eqs. (58) and (61)
can be trivially performed. We thus introduce the following new definition
of ``hatless'' matrix elements [which depend on a single couple of integer
wave-numbers (M0 , Mf )]:5
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WM0 , Mf
(q, K; {)=:

m1

:
m{

$Kr(M0+m1+ } } } +m{)

_JM0&m1
[(q+M0) K ] Jm1&m2

[(q+M0+m1) K ]

_Jm2&m3
[(q+M0+m1+m2) K ] } } } Jm{&Mf

(qK ), {�1

(68)

The Master equation in the diffusive regime reduces to:

.(q, K; {+1)= :
{

_=0

�(q, K; _) .(q, K; {&_)+:
m$

Dm$(q, K; {+1) gm$(q; 0)

(69)

The memory kernel is now:

�(q, K; 0)=J0(qK )

�(q, K; 1)=0 (70)

�(q, K; _)=W0, 0(q, K; _), _�2

The destruction operator is:

Dm$(q, K; 1)=J&m$(qK )

Dm$(q, K; 2)=0 (71)

Dm$(q, K; {+1)=W0, m$(q, K; {), {�2

The equation for the fluctuations reduces to:

gm(q, K; {)= :
{

_=0

Cm(q, K; _) .(q, K; {&_)

+:
m$

Pm, m$(q, K; {+1) gm$(q; 0) (72)

The creation operator is:

Cm(q, K; 0)=0

Cm(q, K; 1)=0 (73)

Cm(q, K; _)=Wm, 0(q, K; _&1), _�2
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The propagation operator is:

Pm, m$(q, K; 1)=$m, m$

Pm, m$(q, K; 2)=0 (74)

Pm, m$(q, K; {+1)=Wm, m$(q, K; {&1), {�2

Eqs. (69) and (72) are the basic Master equations for the standard map
in the diffusive regime. We have already achieved an important simplifica-
tion at this stage: these are no longer integral equations with respect to the
variable q. All the operators reduce to their diagonal elements in q; the
equations interrelate only the unknown functions for the same value of the
wave vector.6

The Master equations remain, however, non-Markovian as they
involve convolutions in the (discrete) time {. An important additional sim-
plification would be justified if it could be shown that the operators �({),
D({), C({), P({) all decay rapidly, on a time scale {M , the memory time.
Then, as shown in Section 3, the master equations can be markovianized
and reduced asymptotically, for times {>>{M , to:

.(q, K; {+1)=9(q, K ) .(q, K; {) (75)

gm(q, K; {)=Cm(q, K ) .(q, K; {) (76)

with the following definitions for the time-independent operators:

9(q, K )= :
�

_=0

�(q, K; _) (77)

Cm(q, K )= :
�

_=0

Cm(q, K; _) (78)

6. THE MEMORY KERNEL IN THE DIFFUSIVE REGIME

Even in the diffusive regime, defined by Eqs. (69) for the density
profile, and (72) for the fluctuations, the basic operators cannot be
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evaluated exactly, because for {�2 they involve multiple infinite summa-
tions over wave numbers mj . We must therefore, in practice, introduce
approximations which produce the truncation of these series after a finite
number of terms. These approximations are validated by the very definition
of the diffusive regime, Eq. (65), or (64).

We first consider the memory kernel �(q, K; {), defined by Eq. (70)
which, combined with (68) (with M0=Mf=0) yields:

�(q, K, {)=:
m1

} } } :
m{

$Kr(m1+ } } } +m{)

_J&m1
(qK ) Jm1&m2

[(q+m1) K ]

_Jm2&m3
[(q+m1+m2) K ] } } } Jm{

(qK ) (79)

for {�2. This equation involves two types of Bessel functions.

v The two extreme (right and left) factors are of the type Jm(qK ),
where the argument qK<<1, as follows from Eq. (64). It is well known
that, to dominant order in the small argument, the Bessel function behaves
as:

Jm(qK )t\qK
2 +

|m|

(80)

v The intermediate factors are of the type Jm(qK+nK ), where n is
some non-zero integer. In this case, because of (64), nK>>qK, and the
order of magnitude of the factor is found from the asymptotic limit of the
Bessel function:

Jm(qK+nK )rJm(nK )

t�2
?

(nK )&1�2 cos(nK&((2m+1)�4) ?) (81)

As a result, the general term of the series in Eq. (79) is of order:7

(qK ) |m1|+|m{ | K&({&1)�2 (82)

This first, crude estimate shows that the memory kernel �(q, K; {)
decreases in time roughly as K&{�2; the various terms in its defining series
are, however, of different orders of magnitude with respect to the two small
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parameters (qK ) and K&1�2. Moreover, the estimate (82) only provides a
kind of ``envelope'': the precise dependence on K is complicated by the
oscillations of the Bessel functions and their relative phase relationships
[see (81)].

In order to calculate approximately �(q, K; {), certain criteria must be
defined, allowing the truncation of the multiple series in Eq. (79). The first,
and most important criterion is the order in (qK ). To a given order in this
quantity, there is still, however, an infinite number of terms (for {�4). The
criterion for the truncation of this subseries is explained in Appendix B.
The following expressions are obtained through order (qK )4:

�(q, K; 0)=J0(qK ) (83)

�(q, K; 2)=J 2
1(qK )[J2(K+qK )+J2(K&qK )]+2J 2

2(qK ) J4(2K ) (84)

�(q, K; 3)=&2J 2
1(qK ) J3(K&qK ) J3(K+qK )

&2J1(qK ) J2(qK )[J5(2K&qK ) J4(K+qK )

&J5(2K+qK ) J4(K&qK )+J0(K+qK ) J3(2K+qK )

&J0(K&qK ) J3(2K&qK )]+2J 2
2(qK ) J 2

6(2K )

&4J1(qK ) J3(qK )[J5(K ) J7(3K )+J1(K ) J5(3K )] (85)

As explained in Appendix B, the expression of �(q, K; 4) is very long, and
will not be written down here; it was, however retained in the forthcoming
calculations.

It is immediately seen that �(q, K; 0) very strongly dominates the
values for positive {. The reason for this clearly appears from Eqs. (83)�(85):
�(q, K; 0)=J0(qK )t1, whereas for all other values of { the memory
kernel is of dominant order J 2

1(qK )t(qK )2<<1.
The memory kernel is plotted in Fig. 1 as a function of q, for fixed K

and for {=2, 3, 4. The range chosen for q is (0, 0.02); the value chosen for
K in all forthcoming figures at fixed K will be K=22.5; we thus obtain:
qK�0.45, - K =4.74. Both values are somewhat marginal for the criterion
(64); the value of q is an upper limit, the bulk of the density profile chosen
below will be in the range below 0.005. On the other hand, too large a
value of K, while favorable for the mathematics, would not be very interesting
for physical applications (it would, in particular, require an even smaller
maximum q).

Clearly, �(q, K; 2) dominates, but |�(q, K; 3)|<|�(q, K; 4)|. This
``irregularity'' will be understood from the discussion that follows.
Meanwhile, we note that, even for the largest q, the value of |�(q, K; {)|
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Fig. 1. The memory kernel �(q, K; {) for fixed K=22.5, vs. the wave vector q. Solid: {=2;
dotted: {=3; dashed: {=4. �(q, K; 0)=J0(qK )r1 is not represented.

has dropped from 1 (for {=0) to about 0.003 for {=4. The sum in the
convolution of the right hand side of Eq. (69) [or (87) below] can there-
fore be truncated at _=4. This property leads to a natural definition of the
memory time {M mentioned defined in Eq. (46):

|�(q, K; {)|r0 for {>{M (86)

In the case considered here we find: {Mr4.8

We now consider the memory kernel for fixed q=0.005 (in the bulk
of the density profile) as a function of the stochasticity parameter (Fig. 2).
The most striking feature is the oscillatory nature of the memory kernel as
a function of K. The period of the oscillations is approximately constant
(2K2r6.4 for �(q, K; 2), 2K3r2K4r

1
2 2K2), but the amplitudes are

slowly increasing with K for all three functions. Note that �(q, K; 4) is
approximately in phase with �(q, K; 2), whereas �(q, K; 3) is out of phase
with the former two. More precisely, the zeroes of �(q, K; 2) approximately
coincide with zeroes of �(q, K; 4) and with (negative) minima of �(q, K; 3).
On the other hand, the extrema of �(q, K; 2) approximately coincide with
positive maxima of �(q, K; 4) and with zeroes (i.e., maxima) of �(q, K; 3).
For our default value K=22.5, both �(q, K; 2) and �(q, K; 4) have a
positive maximum, whereas �(q, K; 3) is almost zero: this corresponds
indeed with Fig. 1. We finally note that in the range of K represented in
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Fig. 2. The memory kernel �(q, K; {) for fixed q=0.005, vs. the stochasticity parameter K.
Solid: {=2; dotted: {=3; dashed: {=4.

Fig. 2, the function �(q, K; 0) does not oscillate: it decreases extremely
slowly and monotonously (varying from 0.999 at K=15 to 0.987 at
K=45).

7. SOLUTION OF THE MASTER EQUATION FOR THE DENSITY
PROFILE

The master equation (70) will now be analyzed in two successive steps.
We first assume that the initial condition is a density profile, independent of
the angle; in Fourier space this amounts to taking: .(q, K; 0)=.0(q),
gm(q, K; 0)=0, \m. The second (destruction) term in the right hand side of
Eq. (69) is then identically zero. Moreover, given the rapid decay of the
memory kernel in time, we decide to truncate the convolution at _=4
(={M) (except, of course, for {<4). The master equation then reduces to
the following simpler form:

.(q, K; {+1)= :
{C

_=0

�(q, K; _) .(q, K, {&_)

(87)

{C ={{,
4,

for {�4
for {>4

We also introduce the propagator H(q, K; {) relating the density
profile at time { to its initial value .0(q):

.(q, K, {)=H(q, K; {) .0(q) (88)
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this function obeys the same equation (87), with an obvious initial condition:

H(q, K; {+1)= :
{C

_=0

�(q, K; _) H(q, K; {&_)
(89)

H(q, K; 0)=1

This equation can be solved analytically if the following approxima-
tion is accepted. Terms of the following orders are retained: arbitrary
powers of �(q, K; 0), terms of order �(q, K; 2) and [�(q, K; 2)]2; terms of
first order in �(q, K; 3) and �(q, K; 4). Each of these functions in turn, is
evaluated through order (qK )4, as explained above. The derivation of the
solution is given in Appendix C. The result is written by using the following
abbreviations: H{#H(q, K; {), �{#�(q, K; {):

H0 =1

H1=�0

H2=�2
0

H3=�3
0+�2

H4=�4
0+2�0�2+�2

H5=�5
0+3�2

0�2+2�0 �3+�4

H{=�{
0+({&2) �{&3

0 �2+({&3) �{&4
0 �3+({&4) �{&5

0 �4

+ 1
2 ({&5)({&6) �{&6

0 �2
2 ,

{�6 (90)

We now consider the Markovian approximation to the master equation.
Two cases can be considered. The first, crudest approximation consists of
neglecting the memory effects altogether in Eq. (87); this amounts to putting
�(q, K; _)=0 for all _>0 in Eq. (87), which then reduces to:

.Z(q, K; {+1)=�(q, K; 0) .Z(q, K, {), Zero-Markovian (91)

This approximation will be called ``Zero-Markovian.'' Recalling the
general definition (43), (and using again the abbreviated notation) we see
that:

�0=PUP (92)
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Thus the memory kernel in this approximation is simply the diagonal
(P&P) element of the Perron�Frobenius operator. Writing Eq. (91) in the
general form (41):

Pf ({+1)=PUPf ({) (93)

we note the striking analogy with the Vlasov equation of continuous-time
kinetic theory of gases or plasmas, obtained from Eq. (9):

�
�t

VF(t)=VLVF(t) (94)

In both equations the fluctuations��respectively, the correlations��are
completely neglected, even in the intermediate ``virtual'' states of the evolu-
tion operator.

The solution of the Zero-Markovian equation (91) is immediate:

.Z(q, K; {)=[�(q, K; 0)]{ .0(q), Zero-Markovian (95)

The more accurate Markovianization process described in Section 3,
combined with the truncation performed in our problem yields the following
form:

.M(q, K; {+1)=9(q, K ) .M(q, K; {), Full Markovian (96)

with:

9(q, K )=�(q, K; 0)+�(q, K; 2)+�(q, K; 3)+�(q, K; 4) (97)

The solution of Eq. (96) is straightforward:

.M(q, K; {)=[9(q, K )]{ .0(q), Full Markovian (98)

In the following figures we evaluated numerically the solutions defined
above. We took an initial condition for the density profile that is exponential
in the x-space:

n0(x)=
*
2

exp(&* |x| ) (99)

Its Fourier transform is:

.0(q)=
*2

*2+(2?q)2 (100)
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Fig. 3. The density profile .(q, K; {), solution of the non-Markovian master equation, vs. {.
K=22.5. Dotted: {=0; dashed: {=100; dash-dotted: {=1000; solid: {=5000.

We choose the value *=0.01 for the characteristic wavenumber of this
profile. This Lorentzian function is properly normalized in agreement with
Eq. (19); it is sharply peaked around q=0 and, for the default value
K=22.5, satisfies the criterion (65).

In Fig. 3 the solution .(q, K; {), Eq. (88) is plotted as a function of q
for {=0, 100, 1000, 5000. The overall evolution is a narrowing of the func-
tion .(q, K; {) for increasing times. In other words, the long tail of the
Lorentzian is progressively cut off, whereas the value .(0, K; {)=1 is main-
tained for all times (conservation of the normalization). This evolution
shows, a posteriori, that the criterion (66) is better and better satisfied as
time passes. The narrowing in Fourier space corresponds to a spreading in
x-space, hence, grossly speaking, to a dispersive behaviour. Whether this
``dispersion'' can be called ``diffusion'' has to be further examined.

We now compare the non-Markovian solution to the two Markovian
approximations. Consider first the zero-Markovian solution, which has a
simple analytical form. From Eqs. (95) and (83) the following expression is
found for the propagator, in the domain of small (qK ):

HZ(q, K; {)=[J0(qK )]{
r_1&

1
4

(qK )2&
{

rexp \&
1
4

K2q2{+ (101)

This has precisely the form of the propagator associated with the diffusion
equation (in Fourier space), with a diffusion coefficient D:

HZ(q; {)rexp[&D(K )(2?q)2 {] (102)
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The diffusion coefficient appearing in the zero-Markovian approximation
(101) is thus:

D(K )=DQL(K )=
1

4(2?)2 K2 (103)

This is the well-known ``quasilinear diffusion coefficient.''(2�4, 6�14) Thus,
the ``Vlasov'' approximation for the standard map in the diffusive regime is
equivalent to the quasilinear approximation. The important point is that
already at this stage, we see that for large spatial scales and for long times
(ensuring the validity of the asymptotic zero-Markovian approximation) the
standard map dynamics reduces to a truly diffusive regime characterized by
the propagator (102).

Fig. 4. Non-Markovian compared to the zero-Markovian and full Markovian approxima-
tions for the density profile. K=22.5. Dotted: initial condition; solid: non-Markovian, super-
posed to full Markovian; dashed: zero-Markovian. a: {=100; b: {=1000.
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We now consider the graphs of the non-Markovian, zero-Markovian
and full Markovian solutions. For relatively short times the three functions
are close together: this is seen in Fig. 4a for {=100. For long times the full
Markovian solution is very close to the non-Markovian (as expected) for
most values of q; the zero-Markovian ``Vlasov'' solution, however, is signifi-
cantly different from the ``exact'' non-Markovian (Fig. 4b). Eventually, all
three functions will coalesce and become very narrow; but this process will
take quite a long time. This is a very interesting result. Recalling Eqs. (75)
and (77), it is seen that the memory effect [i.e., �(q, K; _) for _>0] cannot
be ignored in the markovianization of the evolution equation, i.e., in the
construction of the full Markovian memory kernel 9(q, K ), Eq. (97) and of
the propagator HM(q, K; {)#exp[9(q, K ) {]. Thus, the full Markovian
approximation should not be understood as a ``memoryless'' evolution. The
evolution operator 9(q, K ) is built up by the cumulative action of the
exact memory kernel over a finite time span of the order of the short
memory time {M .

The non-Markovian effects are masked in Fig. 4, because of the scale
of the figures which encompasses the entire density profile. A clearer view
is obtained by plotting in Fig. 5 the difference between the non-Markovian
and the full Markovian: 2NM(q, K; {)=.(q, K; {)&.M(q, K; {), for {=10,
500, 1000, 5000. The deviation is indeed very small, but it depends on q
(and K ): as time goes on, it concentrates at small values of q. For q=0.005
it is about ten times larger in absolute value at {=1000 than at {=100.
Percentagewise, however, this peak represents barely about 0.10, because
it occurs in the bulk of the density profile where .(q, K; {)r1.

Fig. 5. Deviation of the full Markovian approximation from the non-Markovian solution
2NM(q, K; {)=.(q, K; {)&.M(q, K; {). K=22.5. Solid: {=10, dotted: {=500; dashed:
{=1000; dash-dotted: {=5000.
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Fig. 6. Deviation of the full Markovian approximation from the non-Markovian solution,
2NM(q, K; {) vs. {, for fixed K=22.5, for three values of q. From bottom to top: q=0.012,
0.008, 0.005.

A very important information is obtained by studying the deviation
2NM(q, K; {) as a function of time (for fixed K=22.5). The graph of Fig. 6
shows the tendency of the non-Markovian toward the Markovian: after an
initial growth of the deviation (in absolute value) follows a decay that
appears to be exponential. This decay is very slow for small q and very fast
in the tail of the distribution. The exponential nature of the decay is clearly
apparent by plotting the natural logarithm of |2NM | as a function of time
(Fig. 7): after the initial transient regime, this curve is perfectly linear.
Upon measuring the slope of the final branch of this curve for several
values of q, we find that the result is very accurately fitted (for long times)
by the following function:

|2NM(q, K; {)|=A exp \&
{

{R(q, K )+ (104)

Fig. 7. Natural logarithm of the deviation |2NM(q, K; {)| vs. { for fixed q=0.006 and
K=22.5.
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where A is an irrelevant constant, and {&1
R is obtained numerically as:

1
{R(q, K )

=92.66q2, K=22.5 (105)

The relaxation time {R(q, K ) (Bq&2) thus varies rather slowly for
large q, but becomes very large for small q, becoming infinite for q=0.
Indeed, the value .(q=0, K; {)=1 must remain unchanged in time in
order to preserve the normalization.

Two facts are important in this result. First, it offers an intrinsic and
objective definition of the relaxation time {R . In ordinary kinetic theory of
gases, an initial non-equilibrium state relaxes exponentially towards a non-
trivial, time-independent equilibrium state. This exponential law introduces
a relaxation time-scale. In the present case, we found that the asymptotic
decay of the deviation is also exponential. Thus, the non-Markovian effects
in the ``exact'' solution decay exponentially after a short transient time.
This evolution is characterized by an intrinsic time scale {R(q, K ) which we
propose to define as the relaxation time of the non-Markovian (exact) solu-
tion evolving towards its asymptotic Markovian regime.

The second interesting fact is the form (105) of the relaxation time
{R(q, K ): its dependence on the wave vector is typical of a diffusion process
[see Eq. (102)]; combining, indeed, Eqs. (104) and (105), the former may
be written in the form:

|2NM(q, K; {)|texp[&(2?q)2 DR(K ) {] (106)

with the following value of the diffusion coefficient:

DR(K )=
92.66
(2?)2=2.35, K=22.5 (107)

This value of the coefficient DR(K ) will be further discussed below. Thus,
the relaxation time {R(q, K ) is a function of q and K, but is entirely deter-
mined by the single scalar function DR(K ) through Eq. (105).

To sum up this discussion, the mechanism of the relaxation of the
standard map dynamics in the diffusive regime is characterized by a
``double diffusion mechanism''. Starting from an arbitrary non-equilibrium
state, the system approaches in a non-Markovian way the corresponding
Markovian: this evolution is asymptotically diffusive and is characterized
by a diffusion coefficient DR . The Markovian itself relaxes toward spatial
homogeneity in an asymptotically diffusive way, controlled by a diffusion
coefficient D, that will be calculated below. This ``double diffusion
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Fig. 8. a: Evolution in time of the non-Markovian solution for the density profile, .(q, K; {).
b: Evolution in time of the deviation from the non-Markovian solution, 2NM(q, K; {).
q=0.006, K=22.5.

mechanism'' is illustrated quantitatively in Fig. 8, in which the evolution in
time (for a fixed wave vector q=0.006) of the (non-Markovian) solution
and of its deviation from the Markovian are shown in parallel on the same
horizontal scale (but not the same vertical scale!). The exponential decay
of the former starts after a very short time, whereas the deviation starts its
diffusive decay much later (after about {r1500). As a result, in the long

Fig. 9. Long time tails of the non-Markovian, .(q, K; {) and Markovian .M(q, K; {) solu-
tions for the density profile. q=0.006, K=22.5.

1200 Balescu



time tail, where .(q, K; {) is very small (say, at {>2000), the deviation of
the non-Markovian from the Markovian is, percentage-wise, very large. In
our example, the deviation at {=700 is 170, whereas for {=2000 it
represents 2000! This is made visible in a zoom on the long time tails of
the non-Markovian and the Markovian solutions (Fig. 9).

8. NON-GAUSSIAN FEATURES OF THE EVOLUTION

If the evolution of the density profile were asymptotically truly dif-
fusive, the latter should tend, for long times, towards a Gaussian packet of
the following form (in Fourier space) [see (102)]:9

.G(q, K; {)=exp[&1
2 (2?q)2 (x2(K; {))] (108)

where (x2(K; {)) is the mean square displacement; for a diffusive regime
it is a linear function of time (with a slope depending on K ). In the present
section we investigate to what extent the non-Markovian and the
Markovian solutions approach a Gaussian packet in the long time limit.

We first calculate the mean square displacement, i.e., the second
moment of the density profile. Using Eqs. (20) and (88), and the fact that
all odd-order derivatives turn out to vanish, we obtain:

(x2(K; {)) =&
1

(2?)2 {�2H(q, K; {)
�q2 .0(q)+H(q, K; {)

�2.0(q)
�q2 =}q=0

(109)

Noting that H(q=0, K; {)=1, \{ and .0(0)=1 [both properties are a
result of the normalization, see Eq. (19)], and using Eq. (100), this expres-
sion reduces to:

(x2(K; {)) =&
1

(2?)2

�2H(q, K; {)
�q2 }q=0

+
2
*2 (110)

From Eqs. (80) and (83)-(85) it is seen that �(0, K; {)=0 for {>0; it
is also checked that ��(q; {)��q|q=0=0 for {�0. It then follows from
Eq. (90) that the second derivative of the non-Markovian propagator is:

�2H(q, K; {)
�q2 } q=0

=
�2

�q2 [{�0+({&2) �2+({&3) �3+({&4) �]|q=0

(111)
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This result shows that the mean square displacement is indeed a linear
function of time, characteristic of a diffusive regime. It contains a large
constant [due to the contribution of the initial condition, the last term of
Eq. (110)]. The diffusion coefficient, which depends on K, is defined in the
usual way:10

D(K )=
1
2

d(x2(K; {))
d{

(112)

We thus find, from (111):

D(K )=&
1

2(2?)2 :
4

_=0

�2�(q, K; _)
�q4 } q=0

(113)

Before continuing the discussion of this result, we note that the same
steps can be repeated using in Eq. (111) the Markovian propagator
HM(q, K; {)=[9(q, K )]{ defined in Eqs. (97), (98). A short calculation
shows that the diffusion coefficient associated with the Markovian solution
exactly equals the non-Markovian one (113): this is a remarkable result.

The explicit expression of the leading contributions to the diffusion
coefficient11 is:

D(K )=
K2

16?2 [1&2J2(K )+2J 2
3(K )+2J 2

2(K )

+[J1(K )+J2(K )] J6(K ) J8(K )+2J0(K ) J4(K ) J4(2K )+ } } } ]
(114)

This quantity (including the terms not written explicitly) is represented
in Fig. 10. The dotted line represents the first term in (114), which is none
other than the quasilinear (Vlasov) diffusion coefficient (103). The next
terms in Eq. (114) [or (113)] produce oscillations around the quasilinear
value. These peculiar oscillations were first discovered in the pioneering
work of Rechester and White.(8)

The results obtained so far showed that the second moment
(x2(K; {)) of the density profile has the characteristic, linearly increasing
form of a diffusion process. It is controlled by a single diffusion coefficient
that is the same for the ``exact'' solution and for the asymptotic Markovian
one.
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Fig. 10. Diffusion coefficient as a function of K. Solid: Eq. (113); dotted: quasilinear
approximation, Eq. (103).

It can also be checked that the numerical value of the diffusion coef-
ficient D(22.5)=2.347 coincides with the coefficient DR determined by the
relaxation time {R in Eq. (107). In particular, this implies that the charac-
teristic time for the relaxation of the deviation from the Markovian is the
same as the one determining the asymptotic dynamics of the density profile.

These features are, however, not sufficient for claiming that the evolu-
tion process of the standard map is (asymptotically) diffusive. It must be
shown that the density profile approaches, in the long run, the Gaussian
packet form (108). A first indication of the deviation of a distribution func-
tion from a Gaussian is provided by the kurtosis, }:

}(K; {)=
(x4(K; {))

[(x2(K; {))]2 (115)

For a Gaussian distribution this quantity equals 3 for all times.(23, 24) The
fourth moment of the non-Markovian solution, related to its fourth
derivative by Eq. (20) is:

(x4(K; {)) =
1

(2?)4 {�4H(q, K; {)
�q4 .0(q)+6

�2H(q, K; {)
�q2

�2.0(q)
�q2

+H(q, K; {)
�2.0(q)

�q2 =} q=0

(116)

is an exceedingly cumbersome expression. We therefore limited ourselves to
a somewhat less accurate approximation, which retains the dominant
features: the terms containing �(q, K; 4) and [�(q, K; 2)]2 are neglected in
Eq. (90).

1203Kinetic Theory of Area-Preserving Maps



File: 822J 248736 . By:XX . Date:13:01:00 . Time:13:48 LOP8M. V8.B. Page 01:01
Codes: 1687 Signs: 1188 . Length: 44 pic 2 pts, 186 mm

Fig. 11. Kurtosis of the non-Markovian solution for the density profile, vs. K at various
times. From top to bottom: {=10, 100, 500, 1000, 5000.

The kurtosis of the density profile .(q, K; {) is shown in Fig. 11 as a
function of K for several times, between 10 and 5000. Note that the kurtosis
of the initial density profile (100) equals exactly 6. The kurtosis decreases
progressively in time, tending toward the Gaussian value }=3. This decay
is faster for the larger values of K. Note again the presence of the ubiqui-
tous oscillations in K. The tendency toward the Gaussian value takes a
very long time for moderate values of K: for our default value K=22.5, the
kurtosis is still close to 4 after 5000 iterations. Note also that for K>50
and {=5000 the kurtosis is very close to 3, but continues to undergo
oscillations of significant amplitude in K. The kurtosis for the standard
map has been previously calculated by the method of Fourier paths (see
Section 11) by Tabet et al.(25) with a result qualitatively similar to ours.

Fig. 12. Kurtosis of the Markovian approximation for the density profile, vs. K at various
times. From top to bottom: {=10, 100, 500, 1000, 5000.
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Figure 12 shows the evolution of the kurtosis for the Markovian solu-
tion. The curves are very similar to the previous ones. It may be noted,
however, that the oscillations in K disappear completely for K>50 at time
{=5000: the Markovian in this domain reaches its Gaussian kurtosis value.
But for K=22.5, even the Markovian is not yet Gaussian!

A more global view is obtained by comparing the shape of the density
profile (88), (90) at various times to the corresponding Gaussian packet
(108) evaluated at the same times with the mean square displacement
(110). In Fig. 13 we clearly see the density profile ``running after the run-
ning Gaussian profile'', as described above in Section 7. The deviation of

Fig. 13. Comparison of the non-Markovian solution for the density profile .(q, K; {) [solid
line], the diffusive Gaussian packet .G(q, K; {) [dashed line], and the initial condition, .0(q)
[dotted line]. K=22.5. a: {=100, b: {=1000, c: {=7000.
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Fig. 14. Deviation of the diffusive Gaussian packet from the non-Markovian solution,
2G(q, K; {)=.(q, K; {)&.G(q, K; {). K=22.5. From top to bottom: {=10, 100, 500, 1000,
5000.

the density profile from the Gaussian, 2G(q, K; {)=.(q, K; {)&.G(q, K; {)
is plotted in Fig. 14 against q for several times. The corresponding graph
for the deviation of the Markovian is almost identical.

In conclusion, the density profile determined by the standard map
evolves asymptotically toward a Gaussian packet characteristic of a diffusion
process. Nevertheless, the process takes a long time before the entire den-
sity profile adjusts to the Gaussian shape; it does so at different rates for
different wave vectors. The time after which . relaxes to .G at various q
is of the order of the relaxation time for the same value of q. As a result,
even after 5000 iterations, the density profile is not yet exactly Gaussian,
especially at small q.

9. THE DESTRUCTION FRAGMENT

In the present section we study the influence of the initial fluctuations
on the evolution of the density profile. We therefore consider the complete
master equation for the standard map in the diffusive regime, Eq. (69). The
general case is, however, very complicated, because the destruction term
involves an infinite sum over all Fourier components (with respect to the
angle %). We therefore specialize our study to a particular case, i.e., a par-
ticular choice of the initial distribution function (in x&% space):

F(x, %; 0)=n(x; 0)[1+a cos 2?+%] (117)

where the parameter a is chosen as: a=0.5, and + is an integer; in the
forth-coming calculations its default value is set to +=2, unless stated
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otherwise. It follows that the initial fluctuation in Fourier space is simply:

gm(q; 0)=
a
2

.0(q)[$m, ++$m, &+] (118)

with .0(q) defined by Eq. (100). We thus retain a single harmonic in the
Fourier series of the initial distribution function, assuming that the latter is
an even function of %.

The general expression of the destruction fragment in the diffusive
regime was derived in Eqs. (68) and (71). It appears that for {�3 these
expressions become very cumbersome, for the reasons explained in
Appendix B. On the other hand, the effect of the destruction fragment is
small compared to the memory kernel. We therefore decided to evaluate
the former to a lower degree of approximation, retaining only terms
through order (qK )2 (which were checked to be clearly dominant). In the
factors multiplying the latter for each {, we chose to neglect terms contain-
ing Bessel functions of the form Jm(nK ) with n>2 (see Appendix B). For
brevity, we introduce the following notations:

D(q, K; {)#D{#:
m$

Dm$(q, K; {) gm$(q; 0) (119)

We then find, from Eq. (71), for +=2:

D1 =qJ2(qK ) .0(q)

D2=0

D3=a[J0(qK ) J2(qK ) J4(2K )&J 2
1(qK ) J2(K )] .0(q)

D4=a[J 2
1(qK )[J 2

3(K )&J1(K ) J5(3K )&J5(K ) J7(3K )]

+ 1
2J1(qK ) J0(qK )[J0(K&qK ) J3(2K&qK )

&J0(K+qK ) J3(2K+qK )+J4(K&qK ) J5(2K+qK )

&J4(K+qK ) J5(2K&qk)]+J0(qK ) J2(qK ) J 2
6(2K )] .0(q) (120)

We note that, because of the special choice (118), in which the initial
q-dependence of the fluctuation is the same as the density profile, the
destruction fragment can also be written in the (complete and abridged)
forms:

D(q, K; {)=2(q, K; {) .0(q)#2{.0(q) (121)
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Fig. 15. Contribution of the destruction fragment to the kinetic equation, D(q, K; {) at
various times. Initial condition: single harmonic cos 2?+%, +=2. Solid: {=1; dotted: {=3;
dashed: {=4. K=22.5.

The contribution of the destruction fragment to the kinetic equation is
shown in Fig. 15. Its absolute value is, indeed very small (t10&5), and is
very sharply decreasing in time, as expected: it becomes negligible after the
short memory time {Mr4 [see Eq. (46)].

We now consider the solution of the complete master equation (69)
for the density profile, including the destruction fragment. It is clearly an
inhomogeneous equation associated with the homogeneous equation (87),
the destruction fragment playing the role of a source term. We introduce
again a propagator G(q, K; {)#G{ , and write the solution in the following
form [using the special property (121)]:12

.(q, K; {)=G(q, K; {) .0(q) (122)

The propagator obeys the following equation:

G(q, K; {+1)= :
{C

_=0

�(q, K; _) G(q, K; {&_)+2(q, K; {+1)
(123)

G(q, K; 0)=1

It is not difficult to solve this equation for G{ in terms of the
propagator H{ of the homogeneous equation, obeying Eq. (89). The first
terms are obtained by direct substitution and use of Eq. (90):
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G0 =1

G1=H1+21

G2=H2+H1 21+22 (124)

G3=H3+H2 21+H122+23

G4=H4+H3 21+H222+H123+24

This suggests the form of the general solution for {>4:

G{=H{+ :
4

_=1

H{&_2_ , {>4 (125)

This relation is easily proved by induction. Assume its validity for all times
less than or equal to {. The propagator at time {+1 obeys Eq. (123); sub-
stituting (125) into the right hand side of the latter we obtain:

G{+1 = :
4

\=0

�\ _H{&\+ :
4

_=1

H{&\&_2_&+2{+1

= :
4

\=0

�\H{&\+ :
4

_=1

:
4

\=0

�\H{&\&_2_+2{+1

=H{+1+ :
4

_=1

H{&_+1 2_+0 Q.E.D.

In the last step we used twice Eq. (89), and the fact that 2{=0 for {>4.
The form of Eq. (125) is not surprising. If both sides are multiplied by

the initial condition .0 , it expresses, in discrete time, a well-known
property of linear equations: the solution of the initial value problem for
the inhomogeneous equation13 (69) equals the corresponding solution of
the homogeneous equation (87) plus the convolution of the homogeneous
propagator with the source term.

Although this property is almost trivial, we wish to stress here one of
its consequences, that may help clarifying some ideas. It is usually stated
that for times longer than the memory time (or the duration of a collision
in kinetic theory), {>{M , the destruction operator can be set to zero in the
master equation (69): this is part of the markovianization process [see
Sections 2 and 3]. This statement is certainly correct. It does not imply,
however, that the solution of the asymptotic homogeneous equation (89)
equals (approximately) the solution of the inhomogeneous equation (69)

1209Kinetic Theory of Area-Preserving Maps
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for all times {>{M . Equation (125) shows that for all times {>{M the
solution of the ``exact'' equation contains a contribution from the destruc-
tion term. This contribution is in the form of a convolution of the destruc-
tion fragment with the homogeneous propagator over a time range equal
to {M . It is a function of time that decays over a time scale determined by
the homogeneous propagator. It eventually relaxes to the solution (88), but
only after a time much longer than {M . In conclusion:

v The complete (inhomogeneous) master equation (69) reduces to the
homogeneous equation (87) after a short time {={M ;

v The solution of the initial value problem for the inhomogeneous
master equation (122) relaxes (diffusively) to the corresponding solution of
the homogeneous equation (88) on the long time scale {={R .

This behavior is illustrated in Fig. 16, where the contribution $(q, K; {)
=�4

_=1 H{&_2_.0(q) of the destruction fragment to .(q, K; {) is plotted
against q for increasing times. The slow decay of this function is clearly
visible. After a short time, the decay is very nearly exponential (Fig. 17)
and is fitted by exactly the same diffusive law as the relaxation of the
density profile itself [Eqs. (104)�(107)]. This confirms the point stressed
above: the relaxation of the destruction fragment contribution is controlled
by the homogeneous propagator.

We have also investigated the effect of different initial conditions, in
particular Eq. (117) for +=1, 3, 4, as well as the same equation with
sin 2?+% replacing cos 2?+%. The qualitative behavior in all these cases is
quite similar to the case discussed in detail above and will not be further

Fig. 16. Contribution of the destruction fragment to the non-Markovian solution for the
density profile, $(q, K; {), vs. q, at various times. +=2; K=22.5. From top to bottom: {=1,
3, 10, 50, 150, 500.
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Fig. 17. Contribution of the destruction fragment to the non-Markovian solution for the
density profile, $(q, K; {), vs. {, at fixed q=0.013. +=2; K=22.5.

illustrated here. The destruction fragment contributions in these cases only
differ in absolute value (and possibly in sign). It may be remarked that the
higher harmonics (+>2) of the initial fluctuation give rise to smaller con-
tributions to the density profile.

We finally note that the graphs of $(q, K; {) as functions of K, for fixed
q and {, exhibit the unavoidable oscillations due to the Bessel functions.

10. THE FLUCTUATIONS

We now go over to the study of the fluctuations, determined by
Eqs. (72)�(74). Many features will be familiar by now, hence the discussion
may be shorter. The expressions of the basic operators are now more cum-
bersome. We therefore limit ourselves to their expression through order
(qK )2; the rapid convergence (which we checked) justifies this approxima-
tion. For convenience, we considered fluctuations containing a single cosine
harmonic.14 As a result, the fluctuations will be grouped as follows:

gCm(q, K; {)= 1
2 [ gm(q, K; {)+ g&m(q, K; {)], m>0 (126)

with a similar notation for the basic creation and propagation operators.
The explicit expression of the first few creation operators, for the

harmonics m=1, 2, is obtained from Eq. (73) for {=2, 3:
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CC1(q, K; 2)= 1
2J1(qK )[J2(K&qK )&J2(K+qK )]

CC1(q, K; 3)=J2(qK )[J0(K ) J3(2K )+J4(K ) J5(2K )] (127)

CC2(q, K; 2)= 1
2J2(qK )[J4(2K&qK )+J4(2K+qK )]

CC2(q, K; 3)= 1
2J1(qK )[&[J0(K+qK ) J3(2K+qK )

&J0(K&qK ) J3(2K&qK )]+[J4(K&qK ) J5(2K+qK )

&J4(K+qK ) J5(2K&qK )]]+J2(qK ) J 2
6(2K ) (128)

We do not continue this list explicitly. Let it be mentioned that for
{�4 the expressions for the creation operators involve infinite sums that
have to be truncated, as explained in Appendix B. The propagation
fragment is even more cumbersome. We only give here, for illustration, its
expression for the harmonic m=1, assuming the initial condition to be
Eq. (118) with +=2:

PC1, 2(q, K; 3)=
a
4

J1(qK )[J2(K+qK )&J2(K&qK )] .0(q)

PC1, 2(q, K; 4)=
a
4

[J1(qK )[J5(K+qK ) J7(3K&qK )&J5(K&qK )

_J7(3K+qK )+J1(K+qK ) J5(3K&qK )

&J1(K+qK ) J5(3K&qK )]+J0(qK )[J0(K+qK )

_J3(2K+qK )+J0(K&qK ) J3(2K&qK )

+J4(K+qK ) J5(2K+qK )+J4(K&qK ) J5(2K&qK )]

+2J2(qK )[J6(K ) J9(4K )+J2(K ) J7(4K )]] .0(q) (129)

In Fig. 18 the creation operator CC1(q, K; {) is plotted against q for
{=2, 3, 4 (K=25). We see again that it decays very rapidly, on the same
short memory time scale {M as the basic operators for the density profile.
The same rapid decay is found for the propagation operator PC1, 2(q, K; {).
The dependence on K of the creation operator at various times, exhibiting
the ubiquitous oscillations, is shown in Fig. 19.

We now consider the expression of the fluctuations at time {. We stress
again the following important fact. Contrary to the density profile, there is
no need of solving an equation for obtaining this quantity. The expression for
the density profile��known from the previous step��is simply to be inserted
into Eq. (72). In particular, for {>{M , the propagation fragment has
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Fig. 18. Creation operator CC1(q, K; {) vs. q. K=25. Solid: {=2; dotted: {=3; dashed:
{=4.

decayed to practically zero and no longer contributes to the fluctuations.
The expression for the latter thus reduces to:

gCm(q, K; {)=CCm(q, K; 2) .(q, K; {&2)+CCm(q, K; 3) .(q, K; {&3)

+CCm(q, K; 4) .(q, K; {&4) (130)

This expression is to be compared to the asymptotic Markovian
approximation:

gM, Cm(q, K; {)=[CCm(q, K; 2)+CCm(q, K; 3)+CCm(q, K; 4)] .M(q, K; {)

(131)

Fig. 19. Creation operator CC1(q, K; {) vs. K. q=0.035. Solid: {=2; dotted: {=3; dashed:
{=4.
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These results show that the initial fluctuations, propagated by Pm, m$(q; {),
die away very quickly ({t{M). They are replaced by fresh fluctuations
created out of the density profile: these are long-lived ({t{R). They will,
however, also decay to zero as the system evolves diffusively toward a spatially
homogeneous state. Here we see a difference with the otherwise analogous
evolution of a gas. In the latter case, the correlations created out of the
``vacuum'' evolve toward a non-zero asymptotic value representing the
equilibrium correlations (due to the intermolecular forces).

For the illustrations in the present section we chose a slightly different
default value for K=25; this is because for K=22.5 the creation fragment is
close to zero, as can be seen in Fig. 19. In Fig. 20 we plotted the fluctuations

Fig. 20. Fluctuations gCm(q, K; {) vs. q for different harmonics at different times. K=25.
a: m=1; b: m=2; c: m=3. From top to bottom: {=50, 100, 250, 500.
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Fig. 21. Fluctuations gCm(q, K; {) vs. q for different harmonics at fixed time {=50. K=25.
Solid: m=1; dotted: m=2, dash-dotted: m=3.

as functions of q at several times for the three leading harmonics (m=1, 2, 3):
their slow decay is clearly visible. The decay is faster, as usual, for the large
q-tail. Moreover, the lower harmonics dominate in these ``natural'' fluctua-
tions, as can be seen in Fig. 21.

An interesting test of the previously described mechanism of evolution
is provided by a study of the asymptotic time dependence of the fluctua-
tions. This is shown in Fig. 22 for a fixed value of q. The curves are very
nearly exponential for all three harmonics, as can be clearly seen by plotting
the natural logarithm of the fluctuations against time (Fig. 23). The
straight lines corresponding to the three harmonics are exactly parallel,
indicating that the relaxation time associated with all the harmonics is the
same. This indicates that for the value of q considered, the fluctuations
have very nearly reached the asymptotic Markovian regime (131). In this
regime the time dependence is solely contained in the density profile
.(q, K; {) for all harmonics. As a final test, we compare the numerically

Fig. 22. Asymptotic time dependence of the fluctuations gCm(q, K; {). q=0.005, K=25.
Solid: m=1; dotted: m=2, dash-dotted: m=3.
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Fig. 23. Natural logarithm of the fluctuations | gCm(q, K; {)|. q=0.005, K=25. Solid: m=1;
dash-dotted: m=2, dashed: m=3. The upper dotted line has a slope equal to {&1

R (q, K ).

obtained relaxation time of the fluctuations with the diffusive relaxation
time of the density profile [see Eq. (106)]: {&1

R (q, K )=(2?q)2 D(K ), with
the value of the diffusion coefficient for K=25 determined from Eq. (114):
D(25)=4.841. The result is represented in Fig. 23 by the dotted straight
line with a slope equal to {&1

R : it is strictly parallel to the three other lines.
This is the final check of the mechanism of evolution of the fluctuations
described above.

11. DISCUSSION OF EARLIER WORKS

The (vast) literature on the standard map may be divided into two
groups containing, respectively, ``local'' theories and ``global'' theories. The
former analyze individual trajectories, solutions of Eq. (2), with the pur-
pose of establishing their topological properties as revealed typically by
time-correlation functions. In the globally stochastic region, such studies
provide us with a very detailed picture of the motion of an individual
point, with alternations of quasi-random motion and of segments sticking
to islands, as well as the effect of this topology on transport. Most of these
studies must rely on very long and precise numerical computations of a
large number of orbits. (The most recent examples of high-resolution com-
putations, for K near the threshold of stochasticity, are found in refs. 26
and 27.) The most typical and important studies of this type are those of
Karney and his coworkers(30, 31) in which the sticking property of islands is
studied in detail (see below). A different ``local'' approach, entirely analytical,
is the work of Meiss and Ott(32, 33). It describes transport in a non-diffusive
regime in terms of first recurrence times. It is applicable to transport across
cantori (whenever these exist). This regime is, however, outside the range
envisaged in the present work.

The works in the second group involve the study of the distribution
function (or of the density profile) of a statistical ensemble, based on a
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kinetic equation. This global approach is complementary to the previous
one. Both are exact, hence equivalent at the starting point, but the type of
approximations adapted to each of them is different. Thus, in the global
approach it is difficult to describe the fine structure of orbits in the
neighborhood of an island. On the other hand, the local approach does not
tell us anything about the shape of the density profile. The present work
definitely belongs to the second group.

The possible occurrence of ``deterministic diffusion'' in dynamically
unstable systems was discovered a long time ago. The first work treating
this problem explicitly is probably due to Zaslavsky and Chirikov.(7) Using
a simple Hamiltonian and applying the methods of Prigogine(19) with an
assumption of random phases, they derive a Fokker�Planck equation for
the distribution of actions. This work treated a variety of dynamical systems
described both by continuous-time Hamiltonian dynamics and by maps.

The earliest works on the standard map recognized the relation between
this simple model and a diffusive evolution in the limit of large stochasticity
parameter K. These results were reviewed in a celebrated paper by
Chirikov.(2) The approach followed there was not based on statistical
mechanics, but rather on the study of long chaotic trajectories obtained by
iteration of Eq. (2) (``local'' approach). The diffusion coefficient is obtained
by calculating numerically the quantity:

DC= lim
{ � �

(x{&x0)2

2{
(132)

An average is taken over a large number of trajectories (assuming the
angles % are randomly distributed). Chirikov derived analytically the quasi-
linear formula (103). (Chirikov's methodology based on the study of
chaotic orbits was later developed and put on a more and more rigorous
mathematical basis.(28, 29)) He also fitted the density profile obtained
numerically (either from a large number of orbits with random initial con-
ditions, or from a single long orbit) to a Gaussian packet [the inverse
Fourier transform of Eq. (108)]. These features led him to conclude that
the behavior of the standard map is diffusive for large K. Moreover, he
evaluated numerically the function D(K ). The latter yielded a rather fuzzy
picture,15 in which the author detected ``some periodicity in the dispersion
of the experimental points.'' He then attempted a qualitative explanation
of this periodicity in terms of the effect of the ``islands of stability'' and
accelerator modes.

We believe, however, that there exists at present no really satisfactory
proof of the relation between K-periodicity and the presence of islands. The
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accelerator modes do explain the singularities that appear in the more
recent simulations of the function D(K ).(14, 33) The detailed discussion of
this problem goes beyond the matter treated here. Let us recall that these
modes are stable only in certain windows of K, (3, 30, 33�35) whose width
decreases with increasing K. The numerically detectable singularities of the
diffusion coefficient occur precisely inside the first few of these windows.
Any orbit that is sticking to an accelerator mode island is dragged along
by the latter; as a result, the mean square displacement grows faster than {,
and the diffusion coefficient (132) diverges.(30, 31, 33) This is certainly a correct
explanation of the singularities, but not of the periodicity.

An interesting alternative approach to the superdiffusive regime
produced by accelerator modes is found in refs. 36 and 37. The ``strange
transport'' process is modeled by a random walk of Le� vy type, leading to
a mean square displacement of the form (x2(t))tt:, with :>1. The diffu-
sion exponent is determined from a numerical investigation of individual
standard map orbits.

In our treatment the accelerator modes are wiped out (the same state-
ment holds for the works in refs. 3, 9, 14); the inclusion of their effect
requires an extension of the present theory, in particular, a study of the
convergence of the Bessel series defining the evolution operators and the
diffusion coefficient; this is beyond our present purpose. As a result there
appear no singularities in the existing analytical theories of the diffusion
coefficient. The periodicity of D(K ) is, however, present even in absence of
accelerator modes. Moreover, all physical quantities exhibit oscillations
in K, as was shown for some examples in our work. Technically, these
oscillations are due to the fact that the evolution in the standard map
dynamics is closely connected to Bessel functions. We do not see any cor-
relation with the presence of islands. For increasing values of K all islands
progressively become exceedingly small. The ``regular'' oscillations of the
physical quantities, on the other hand, are present for arbitrarily large K,
with approximately constant period.

A second group of works that are relevant to the present problem is
due to Rechester, Rosenbluth and White, (8, 9) to which we may add the
paper of Cohen and Rowlands.(10) This work is also described and slightly
modified in ref. 3. There is an important difference with the present work:
Rechester, Rosenbluth and White study a noisy standard map. In other
words, they assume the presence of an extrinsic diffusion, that will combine
with the intrinsic dynamical stochasticity. This modification is mainly done
for smoothing the numerical simulations. It is, however, not necessary:
their results (in the large-K case) become comparable to ours if the extrin-
sic diffusion is put to zero (as shown also in ref. 3). Note, however, that in
the work of Karney et al.(30), which is also devoted to noisy standard maps,
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the role of noise appears in a more interesting way as a test for the
presence of accelerator modes by a special dependence of the diffusion coef-
ficient on _, the variance of the noise: Dt_&1 (the analysis of this work
is, however, of the ``local'' type).

The methodology of ref. 8 can be summarized as a ``mixed'' treatment
of continuous and discrete time quantities. A distribution function in the
complete phase space,16 F(x, %; {), is introduced as a solution of an evolu-
tion equation (assumed, rather than derived):

�F
�t

+x
�F
�%

+x*
�F
�x

&
_
2

�2F
�%2 =0 (133)

where _ is the extrinsic diffusion coefficient. This is a continuous-time
description in terms of a ``hybrid'' Liouville equation with an additional dif-
fusion term. The discrete time aspect is introduced by modelling the force
term by a standard map dynamics, i.e., by introducing kicks at discrete
times: x* =(K�2?) sin 2?% �j $(t& j). The evolution of the distribution func-
tion in the interval j&1+=<t< j&= is given by the propagator of the
convection-diffusion equation (without the third term). Between j&= and
j+= the function undergoes a jump: F(%, x; j+=)=F(%, x+(K�2?) sin 2?%;
j&=). This procedure is analogous to the usual derivation of a map from
a differential equation. The authors are not interested in the explicit study
of the distribution function itself (for which they obtain a formal solution),
but only in the calculation of the diffusion coefficient defined as:

D= lim
T � �

1
2T |

�

&�
dx |

1

0
d%(x&x0)2 F(x, %; T ) (134)

Their result showed for the first time analytically the appearance of the
oscillations announced by Chirikov. Their quantitative expression will be
discussed below [Eq. (138)].

In their following paper(9) the authors introduced an important
method of investigation of the standard map kinetic equation, based on the
Fourier representation. All subsequent works on the problem, including the
present one, used this representation as a starting point. Its application to
the solution of the equation of evolution obtained in the previous paper
leads to the selection of contributions, as discussed in Appendix B of our
present paper. Their criterion for this selection is the large value of K. The
smallness of q is not used explicitly; it appears, however, implicitly in the
fact (mentioned above) that the authors are interested only in the calculation
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of the diffusion coefficient. The latter is a quantity defined as a limit for
q � 0 [see Eq. (113)]. The authors of ref. 9 devise an ingenious graphical
method (``paths'') for the characterization of the various contributions. This
allows them to derive an expression for the diffusion coefficient involving
terms with up to three Bessel functions. It may be noted at present that
these authors do not use a closed equation for the density profile. As will
be seen below, this leads them to including some Fourier paths that are not
allowed in a correct kinetic theory. The authors devote the second part of
their paper to the study of the small-K regime. We do not discuss this matter,
because we have not considered this regime here.

A continuation of this work is contained in the paper of Meiss et
al., (11) which addresses the more general problem of the correlation func-
tions of two-dimensional, periodic, area-preserving maps, with the standard
map as a particular case. The expression of the diffusion coefficient appears
as a by-product of this theory. In this work use is made of characteristic
functions defined as averages over initial conditions of functions of the
orbits, rather than of distribution functions in the sense of statistical
mechanics. A kind of renormalization procedure is introduced, consisting
in the summation of a partial infinite series of selected terms contributing
to the diffusion coefficient. It is, however, clear that the exclusions due to
the projectors P and Q that appear in kinetic theory are not taken into
account either here.

A different approach appears in the book of Lichtenberg and Lieberman;(3)

it was first introduced by the same authors(12) for a different map. This
treatment does not introduce any extrinsic diffusion, in contrast to the
previous work. Instead, these authors introduce from the very beginning a
Chapman�Kolmogorov equation, from which they derive a Fokker�Planck
equation without more than a qualitative justification. In a sense, the
stochastic diffusion process is assumed a priori rather than derived from the
dynamics. The transition probabilities are determined from the standard
map equations. From the fundamental point of view this procedure is
rather unorthodox, by mixing concepts from Hamiltonian dynamical
systems and probability theories (Markov processes). This mixture is
avoided in our present treatment, which starts from the purely dynamical
Perron�Frobenius operator. Moreover, the Lichtenberg�Lieberman treat-
ment is based from the beginning on a continuous-time formalism. Their
subsequent calculations are very similar (Fourier path method) to those of
Rechester, Rosenbluth and White.17
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A similar work is due to Abarbanel and Crawford.(13), 18 They
calculate a conditional probability P(z, t | w, t0) that the system is at z at
time t, given that it was at w at time t0 . The time is then discretized and
from the former object a diffusion coefficient is calculated. The formalism
is applied to a variant of the standard map, and use is made of the Fourier
paths described above.

A very interesting work in this domain is due to Abarbanel.(38) It is
devoted to the ``non-linear diffusion in Hamiltonian systems exhibiting
chaotic motion''. Its distinguishing feature is the derivation of a true master
equation for the reduced distribution of actions, by using Zwanzig's projec-
tion technique. In this sense, this work is close to ours. He uses, however,
a continuous-time formalism; hence his master equation is of the type of
Eq. (9) rather than of Eq. (41). His equation is applied, in particular, to the
standard map, but not for the same purposes as in the present paper. He
is mostly interested in calculating an autocorrelation function and showing
that it decays exponentially in time, a characteristic of mixing systems.
From our present point of view, the most interesting feature of Abarbanel's
work is the stress put on the difference between ``direct dynamics,'' governed
by the Liouvillian L, and ``projected dynamics'', determined by the
operator QL. Abarbanel's master equation (Eq. (20) of his paper) is:

�
�t

F(I; t)=|
t

0
d{

�
�Ij

Djk(I, {)
�

�Ik
F(I, t&{)+(destruct) (135)

where F(I, t) is the reduced distribution function of the actions Ij , and
Djk(I, {) is the ``projected diffusion tensor'':19

Djk(I, {)=P
�H1

�%j
exp(&QL{)

�H1

�%k
(136)

with H1 the perturbation Hamiltonian and P, Q the projection operators
defined in Section 3 (we do not write down here the expression of the
destruction term). Clearly, it is the projected Liouvillian QL that deter-
mines the evolution in the intermediate states, not the full Hamiltonian,
which defines a ``direct diffusion tensor'' in Abarbanel's terminology:

2jk(I, {)=P
�H1

�%j
exp(&L{)

�H1

�%k
(137)

He derived an elegant operator equation relating the two diffusion tensors.
It appears that the works reviewed above(3, 8, 9, 11) use the direct dynamics
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[corresponding to Eq. (137)] rather than the correct projected dynamics
[corresponding to Eq. (136)]. This explains the discrepancy between their
results and those of the present work for the diffusion coefficient, as will
now be shown.

We first compare the leading terms in the diffusion coefficient, divided
by the quasilinear coefficient: d(K )=D(K )�DQL(K ) in the various works,
which are abbreviated as follows: RW: ref. 8; RRW: ref. 9; M: ref. 11; LL:
ref. 3; B: present work (we use our notations):

dRW (K )=1&2J2(K ) e&_&2J 2
1(K ) e&_+2J 2

3(K ) e&3_ (138)

dRRW (K )=1&2J2(K ) e&_&2J 2
1(K ) e&_+2J 2

2(K ) e&2_+2J 2
3(K ) e&3_

(139)

dLL(K )=1&2J2(K )&2J 2
1(K )+2J 2

2(K )+2J 2
3(K ) (140)

dB(K )=1&2J2(K )+2J 2
2(K )+2J 2

3(K ) (141)

The exponential factors in Eqs. (138) and (139) are clearly due to the
inclusion of extrinsic diffusion in the RW and RRW models. When _ is set
to zero, the expression (139) reduces to the LL result (140) (this is no sur-
prise!). Interestingly, the term 2J 2

2(K ) was missed in the first RW paper.
This is because the term 2J 2

3(K ) originates from �(q, K; 3) [first term in
the right hand side of Eq. (85)], whereas the term 2J 2

2(K ) comes from
�(q, K; 4), which was not retained in RW [in their terminology, the former
comes from a 4-step path, where as the latter comes from a 5-step path].
The most interesting difference between our result and Eq. (140) is the
absence in dB(K ) of the term 2J 2

1(K ). This term in all three previous equa-
tions results from the violation of the rules of ``projected dynamics''. We
showed that the memory kernel must be constructed by using only inter-
mediate states with indices mj{0 in Eq. (68). It appears clearly from the
RRW path corresponding to this contribution (Fig. 24) that the path goes
through m=0 in the intermediate state. For the same reason, the higher
order corrections of RRW are not comparable to ours. It is, however,
remarkable that Eqs. (140) and (141) yield in practice very similar results
(Fig. 25).

The works reviewed above are based either on a continuous-time for-
malism or on a ``hybrid'' formalism (RW, RRW). We now come to the dis-
cussion of works using a formalism explicitly designed for discrete-time
maps. There is a large number of such studies; we shall only discuss those
that are rather closely related to the spirit of the present paper. The main
purpose of these studies is to understand the emergence of an irreversible
(possibly diffusive) behavior in conservative dynamical systems. This has
been a long-standing objective of Prigogine and his coworkers in Brussels
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Fig. 24. A Fourier path in the Rechester�Rosenbluth�White theory which violates the rules
of ``projected dynamics'' (it passes through m=0 in an intermediate state).

and in Austin.(3, 16, 18�20, 40, 41) The most recent version of this philosophy is
the search for a spectral decomposition of the resolvent of the Liouville
equation in an extended functional space, in order to isolate poles corre-
sponding to exponentially decaying states (ref. 42 and references therein).
These works treated either simple mechanical models (such as the Friedrichs
model) or ``large Poincare� systems'' (including classical and quantum gases
of interacting particles), in a continuous-time formalism.

Fig. 25. Comparison of three results for the diffusion coefficient (normalized to the
quasilinear value) d(K ). Solid: Eq. (141), dotted: Eq. (138) with _=0, dashed: Eq. (140).
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The same purpose was also pursued in the study of dynamical systems
defined in discrete time. The models treated exhaustively along these lines
were simple maps, such as the tent map, the Bernoulli map, the baker and
multibaker maps.(39, 43, 44) A review of these methods is given in refs. 21
and 45, in which the discrete-time formalism used in these works is clearly
exposed. The projection operator method is used extensively, but the
definition of the latter is different from the one used here. A projection
operator is attached to each pole of the Perron�Frobenius operator and
defines a ``subdynamics'' in the sense of ref. 40. The eigenvalues obtained in
this way are associated with exponentially decaying modes (the corre-
sponding right and left eigenvectors are very complicated mathematical
objects). They are related to the so-called ``Ruelle resonances''.(46) (A related,
but somewhat different approach is found in the works of Gaspard, collected
in a recent book.(47)) The diffusion coefficient is deduced from the eigenvalue
corresponding to the slowest decay rate. Its value obtained in this way for
these simple system is essentially the quasilinear value.

These methods were applied to the standard map by Hasegawa and
Saphir(14) (see also ref. 6). This work contains a rigorous derivation of the
eigenvalues of the Perron�Frobenius operator for the standard map, from
which an approximate expression for the diffusion coefficient is obtained: it
corresponds to the first two terms in the right hand side of Eqs. (138)�(141):

dHS(K )=1&2J2(K ) (142)

Unfortunately, a paper containing the details of the calculations, announced
by the authors in ref. 14 was never published!

The works discussed above display an interesting mathematical struc-
ture of the evolution operator. The spectral decomposition is not, however,
of much help in obtaining a picture of the actual shape of the distribution
function or of the density profile of these systems. Indeed, the (Gelfand�
Schwartz) distributions appearing as eigenstates have no observable physi-
cal meaning per se. The observable density profiles must be constructed as
superpositions of an infinite number of such singular objects.20 The direct
study of physically observable objects was the main motivation for our
own present work. In order to achieve this purpose, we do not study the
separate eigenvalues and eigenstates, thus partitioning the functional space
into an infinite number of subspaces, each one attached to a specific eigen-
state. We rather adopt a much simpler partition into two subspaces: one
containing the angle-averaged distribution function (the density profile),
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and the other all the rest (the fluctuations). This philosophy closely resembles
the one used in our approach to statistical mechanics, as sketched in Sec-
tion 2, and in more detail in ref. 6 (see also ref. 18). By this procedure the
physically interesting part is identified and an appropriate mathematical
tool is constructed for its direct and complete study.

An early work in this direction was done by Petrosky.(50) He con-
sidered an elastic pendulum (i.e., a weight attached to a spring) in its
motion in the chaotic layer near the separatrix in phase space. The problem
is treated in continuous time, starting from a two-degrees of freedom
Hamiltonian, hence from a Liouville equation for the distribution function.
The coupling between the spring and the weight is supposed to be small.
The relevant part of the distribution function (of pendulum and string
variables) is the reduced distribution function of the two actions. Using a
simple version of the non-equilibrium statistical mechanics formalism (Sec-
tion 2), i.e., second-order perturbation theory, he derives an (asymptotic)
Markovian kinetic equation for the reduced distribution function. It has
the form of a Fokker�Planck equation, hence it describes a kind of dif-
fusive motion in actions space. Its properties were, however, not studied in
detail.

The formalism of non-equilibrium statistical mechanics and of kinetic
theory, extensively developed for many-particle interacting systems,
remained to be adapted to simpler chaotic dynamical systems described by
discrete-time iterative maps. The first important step in this direction was
taken by the work of Bandtlow and Coveney, (15) who derived the master
equation for such systems. This work was reviewed and completed in Sec-
tion 3. Their paper was, however, mostly devoted to the mathematical
aspects of the problem, such as the precise criteria of applicability of the
theory. In several other works, Coveney and his coworkers applied the for-
malism to various maps (essentially variants of the multi-baker map) in
order to study the asymptotic decay of correlation functions of deter-
ministic, reversible, chaotic dynamical systems.(51�53) These studies are also
of essentially mathematical nature. We therefore considered that a more
physical (and graphical) approach of the problem was desirable: this idea
led to the present work.

12. CONCLUSIONS

``Deterministic diffusion'' or ``Hamiltonian stochasticity'' is a concept
which has been identified since more than 25 years as the seemingly ran-
dom behavior of certain dynamical systems in certain ranges of the relevant
parameters. Many different approaches have been used for its description,
each one uncovering some aspects of the phenomenon. Nevertheless, some
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important facts do not seem to have been studied systematically in the past.
Diffusion is a paradigm of a transport process. Transport theory is an
important part of nonequilibrium statistical mechanics, in particular of
kinetic theory. The latter is based on the study of a kinetic equation (such
as, typically, the Boltzmann equation for dilute gases), i.e., a closed equa-
tion of evolution for a ``relevant'' part of the phase space distribution defin-
ing the statistical state of the system. The irreversible behavior emerges as
a long-time, asymptotic property of the solutions of the kinetic equation for
a certain class of dynamical systems. Traditionally, the systems considered
were large many-particle systems of interacting particles. Since the ``chaos
revolution'' the possibility of a kinetic description of small chaotic systems
appeared possible and necessary. The chronology of the previous works
leading to the present work was discussed in Section 11. We now sum-
marize our main results.

The class of dynamical systems considered here are governed by two-
dimensional area-preserving iterative maps. The variables chosen for their
description are ``action-angle-like.'' Rather than studying single trajectories,
we consider here statistical ensembles of systems whose state is defined by
a phase-space distribution function. The latter is uniquely decomposed into
an angle-average part (the density profile) and a complementary part (the
fluctuations) by means of an appropriate pair of projection operators. As
shown in Section 3, an application of the methods of nonequilibrium
statistical mechanics leads to the derivation of a pair of exact equations:
a closed master equation (41) for the density profile, and an equation (42)
expressing the fluctuations as a functional of the density profile. Both equa-
tions apply specifically to the discrete-time nature of the systems con-
sidered. All the evolution operators appearing in these equations are
derived exactly from the basic Perron�Frobenius operator.

The general formalism is applied to the Chirikov�Taylor standard
map, for which exact, explicit equations of evolution (58), (61) are
obtained, that are valid for any value of the stochasticity parameter. The
main characteristic of the master equation (58) is its non-Markovian
character in time; in addition, it is also non-local in the wave vector. In
other words, the value of the density profile (in the Fourier representation)
.(q, K; {) depends on its values at all previous times and all wave vectors:
.(q$, K; {&_). An exact general solution of such an equation is out of
question, as should be expected. There exists, however, one regime (65) in
which the kinetic equations are much simpler (they are no longer non-local
in q), Eqs. (69), (72): it corresponds to small values of the wave vector and
large values of the stochasticity parameter, coupled according to Eqs. (64)
and (65). Under these conditions, the equations become tractable, and
approximate solutions can be found analytically. Moreover, it appears that
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in the long-time limit the master equation can be markovianized, becoming
local in time as well. The subsequent work is devoted to finding the condi-
tions under which this simplification occurs and describing in detail the
way in which these simpler descriptions emerge asymptotically.

Two characteristic time scales were identified. The short memory time
{M measures the range of the memory in the evolution operators: it is of
the order of 4�5 iterations. The long relaxation time {R(q, K ) essentially
measures the rate of diffusive dispersion; it is a decreasing function of the
wave vector ({RB q&2). It is determined by a single diffusion coefficient
D(K ); the latter oscillates as a function of the stochasticity parameter
around the quasilinear value DQL=K2�16?2.

Several distinct relaxation processes can be identified in standard map
kinetics.

(a) The density profile evolves from its initial value .(q, K; 0)
towards a (time-dependent) function determined by the Markovian form of
the equation of evolution .M(q, K; {) (briefly called the Markovian solu-
tion), Eq. (98);

(b) The Markovian solution evolves towards a Gaussian packet
characteristic of a truly diffusive evolution (i.e., a solution of the diffusion
equation) .G(q, K; {), Eq. (108);

(c) The Gaussian packet evolves toward a function sharply peaked
around q=0 (whose maximum remains, however, equal to one because of
the conservation of normalization): it describes the spatial homogenization
produced by diffusion;

(d) The initial fluctuations produce during a short time (t{M) a
small cumulative effect in the density profile through the destruction
fragment; this contribution lives for a long time (t{R).

(e) The initial fluctuations die out very quickly (t{M) and are
replaced by long-living fluctuations created out of the density profile; they
eventually (t{R) decay to zero.

All these processes are characterized by an initial transient regime,
followed by an exponential decay of the form (104). The remarkable fact is
that the relaxation time associated with all these processes is the same:
{&1

R (q)=(2?q)2 D. This does not imply, however, that these processes are
simultaneous; their transient stages may, indeed, be different. We have
shown the ``exact'' (non-Markovian) solution running after the Markovian
solution, which is itself running after the Gaussian; in spite of the equality
of relaxation times, they do catch up one after the other (Fig. 14). The
evolution of the density profile described above is easily understood from
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the (diffusive) form of the relaxation time. The decay of the large-q region
is faster than the core. The tail of the of the distribution function is thus
progressively shortened, and the density profile narrows toward q=0.

The Master equation provides us with a very detailed picture of the
evolution of a system governed by the standard map. This approach goes
much further than the mere determination of a diffusion coefficient. It
allows us to follow in detail the evolution in time of the shape of the
density profile and of the fluctuations.

Moreover, the results obtained here can be extrapolated, at least
qualitatively, to the behavior of more complicated systems, including the
many-particle systems of interest in statistical mechanics. In the sense, the
standard map can be considered as a testing bench for kinetic theory.

APPENDIX A. BASIC OPERATORS FOR THE STANDARD MAP

The explicit evaluation of the basic operators entering the master
equations for the density profile and for the fluctuations in the case of the
standard map is straightforward. They are defined by their matrix elements
between states |q, 0) for density profile (P-)states, or |q, m) (m{0) for
fluctuation (Q-)states. All fragments in Eqs. (34)�(37) are defined in terms
of the propagation fragment QP({) Q. The latter is calculated by using the
definitions (34) and (56).21 We find, for {�2:

(q, m0 | P� ({+1) |q{ , m$)

=(q, m0 | (QUQ){ |q$, m$)= :
m1{0

:
m2{0

} } } :
m{&1{0

| dq1 dq2 } } } dq{&1

_$(q1&q&m0) Jm0&m1
[(q+m0) K ]

_$(q2&q1&m1) Jm1&m2
[(q1+m1) K ]

b

_$(q{&q{&1&m{&1) Jm{&1&m$[(q{&1+m{&1) K ] (A1)

Performing the integrations over dq1 } } } dq{&1 we find [according to
our convention defined in Section 3, in all summations over (lower case) mj

the value mj=0 is excluded: this is the effect of the projector Q]:
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(q, m0 | P� ({+1) |q{ , m$)

=:
m1

:
m2

} } } :
m{&1

$ \q{&q&m0& :
{&1

j=1

m j+ Jm0&m1
[(q+m0) K ]

_Jm1&m2
[(q+m0+m1) K ] } } } Jm{&1&m$ _\q+m0+ :

{&1

j=1

mj+ K&
(A2)

We recognize here the operator W� defined in Eq. (57) of the main
text, and the relation:

(q, m0 | P� ({+1) |q{ , m$)=W� m0 , m$(q | q{ ; {&1), {�2 (A3)

For {=0 we find, using Eq. (39):

(q, m| P� (1) |q$, m$)=$(q$&q) $m, m$ (A4)

and for {=1 we find simply the matrix element of QUQ:

(q, m| P� (2) |q$, m$)=$(q$&q&m) Jm&m$[(q+m) K ] (A5)

The remaining operators, D, C, E are obtained in a quite similar way,
by multiplying the matrix P to the left or�and to the right with a matrix
PUQ or�and QUP.

APPENDIX B. EVALUATION OF THE MEMORY KERNEL

The approximate evaluation of the memory kernel �(q, K; {) will be
sketched here for {=0, 2, 3, 4. For {=0, we found already the result in
Eq. (70): �(q, K; 0)=J0(qK ). This result is complete and exact; the con-
tribution is of order (qK )0. We also found �(q, K; 1)=0, a typical result of
the diffusive regime. The first non-trivial contribution is found from
Eq. (68):

�(q, K; 2)= :
m1{0

:
m2{0

$Kr(m1+m2) J&m1
(qK ) Jm1&m2

[(q+m1) K ] Jm2
(qK )

= :
m1{0

J&m1
(qK ) J2m1

[(q+m1) K ] J&m1
(qK ) (B1)

The diffusive regime constraint m1+m2=0 has suppressed one infinite
summation. We now decide to retain only contributions through order
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(qK )4, recalling Eq. (80) this leaves only four terms in the remaining sum:
m1=\1, \2. Hence:

�(q, K; 2)=J 2
1(qK ) J2(&qK+K )+J 2

&1(qK ) J&2(&qK&K )

+J 2
2(qK ) J4(&qK+2K )+J 2

&2(qK ) J&4(&qK&K )

Using now the well-known properties: J&m(x)=(&)m Jm(x) and Jm(&x)
=(&)m Jm(x), we obtain:

�(q, K; 2)=J 2
1(qK )[J2(K&qK )+J2(K+qK )]

+J 2
2(qK )[J4(2K&qK )+J4(2K+qK )]

Finally, we note that each bracketted term contains contributions of order
0, 1,... in (qK ); hence, through fourth order, we are left with:

�(q, K; 2)=J 2
1(qK )[J2(K&qK )+J2(K+qK )]+J 2

2(qK ) 2J4(2K ) (B2)

Going over to {=3 we find, after implementing the constraints m2=
&m1&m3 and m2{0:

�(q, K; 3)= :
m1{0

:
m3{0

J&m1
(qK ) J2m1+m3

[(q+m1) K ]

(m1+m3{0)

_J&m1&2m3
[(q&m3) K ] Jm3

(qK ) (B3)

There are now many more terms (but still a finite number!) contribut-
ing to order (qK )4: they are identified by the criterion: |m1|+|m3 |�4. We
thus retain the following couples: (m1 , m3)=(1, 3), (1, 2), (1, 1), (1, &2),
(1, &3), (2, 2), (2, 1), (2, &1), (3, 1), (3, &1), together with the couples
with opposite sign: (&1, &3), (&1, &2),..., (&3, 1). [Note that the couples
(1, &1), (2, &2) are excluded by the condition m2=&m1&m3{0.]
Collecting and grouping the terms according to their order in (qK ) as was
done in Eq. (B2), one obtains the expression (85) of the main text.

We now consider {=4, for which the constraint is: m2=&m1&m3&m4 :

�(q, K; 4)= :
m1{0

:
m3{0

:
m4{0

J&m1(qK ) J2m1+m3+m4
[(q+m1) K ]

(m1+m3+m4{0)

_J&m1&2m3&m4
[(q&m3&m4) K ]

_Jm3&m4
[(q&m4) K ] Jm4

(qK ) (B4)

1230 Balescu



Here we encounter for the first time a difficulty. We determine the
terms of order up to (qK )4 as before by choosing the couples (m1 , m4) as
described above. But now to each of these couples corresponds an infinite
number of terms with &�<m3<�. In order to find a criterion for trun-
cating these infinite subseries we look at the three middle Bessel functions.
For each choice of the couple (m1 , m4) the arguments of the second and
fourth of these (neglecting qK ) is (m1K ) and (&m4K ) which are fixed for
each couple; but the argument of the middle one is (&m3 K&m4 K ). The
value of the Bessel functions decreases asymptotically like [|m3+m4 | K ]&1�2

(whatever their order!), thus for given K and m4 they decay like
|m3+m4 | &1�2. We therefore set a limit for the truncation by requiring that
only terms containing Bessel functions with arguments corresponding to
|m3+m4 |�mC are retained, where mC is some fixed integer. In practice, for
the calculation of �(q, K; 4) we chose mC=4.

As an illustration of this procedure, we write down the truncated sub-
series for the couple m1=1, m4=3 [i.e., a contribution of order (qK )4].
The only values to be retained for the subseries are then &7�m3�1;
among these, the values m3=0 and m3=&4 must be excluded (the latter
corresponds to m2=0). We then find as a factor of J1(qK ) J3(qK ) the
following sum:

J&2(K+) J10(4K+) J&10(&3K+)+J&1(K+) J8(3K+) J&9(&3K+)

+J0(K+) J6(2K+) J&8(&3K+)+J2(K+) J2(qK ) J&6(&3K+)

+J3(K+) J0(&K+) J&5(&3K+)

+J4(K+) J&2(&2K+) J&4(&3K+)

+J6(K+) J&6(&4K+) J&2(&3K+)

[we used here the abbreviation Jm(nK+)#Jm(nK+qK )]. Clearly, the
maximum absolute value of the argument of the middle Bessel function
is 4K. We note that the fourth term contains the factor J2(qK ); it therefore
yields (in combination with J1J3) a contribution of order (qK )6 and must
therefore be neglected (see footnote in Section 6). This analysis is done for
each couple (m1 , m4). The result is a large number (156) of terms which
will, of course, not be written down here. They have been retained, how-
ever, in the numerical calculation of �(q, K; 4). The rate of convergence
with increasing mC is, unfortunately, very slow. Moreover, the calculation
of �(q, K; {) becomes prohibitive for {>4. These quantities are, however,
very small compared to �(q, K; {) for {�4.
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The calculation of the other basic operators (destruction, creation and
propagation operators) are done in the same way as above, by using the
same criteria for truncating the series.

APPENDIX C. SOLUTION OF THE NON-MARKOVIAN
MASTER EQUATION

Equation (89) is written out explicitly as follows (recalling that
�1=0):

H{=�0H{&1+�2H{&3+�3H{&4+�4H{&5 , {�5 (C1)

For times shorter than 5, one easily derives the first lines of Eq. (90)
by direct substitution in the appropriate reduced equation. For longer
times the solution is written in the form:

H{ =�{
0+a{�{&3

0 �2+b{�{&4
0 �3+c{�{&5

0 �4+d{�{&6
0 �2

2 (C2)

As noted in the main text, �0 is of zeroth order, and �_ is neglected
for _>4, as well as positive powers of �, except �2

2 . Substituting Eq. (C2)
into (C1), we find:

H{ =�0[�{&1
0 +a{&1�{&4

0 �2+b{&1�{&5
0 �3

+c{&1 �{&6
0 �4+d{&1 �{&7

0 �2
2]

+�2[�{&3
0 +a{&3�{&6

0 �2+ } } } ]

+�3[�{&4
0 + } } } ]+�4[,{&5

0 + } } } ]

Comparing this expression with Eq. (C2), we find the following relations,
together with the corresponding ``initial conditions'':

a{=a{&1+1, a0=a1=a2=0

b{=b{&1+1, b0=b1=b2=b3=0
(C3)

c{=c{&1+1, c0=c1=c2=c3=c4=0

d{=d{&1+a{&3 , d0=d1=d2=d3=d4=d5=0
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These recurrence relations are easily solved as follows:

a{={&2, {�2

b{={&3, {�3
(C4)

c{={&4, {�4

d{=d{&1+{&5, {�5

The last recurrence relation can be easily solved:

d{= 1
2 ({&5)({&6) (C5)
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